Loading...
Search for: biglarian--m
0.211 seconds

    Evaluation of a transient borehole heat exchanger model in dynamic simulation of a ground source heat pump system

    , Article Energy ; Volume 147 , March , 2018 , Pages 81-93 ; 03605442 (ISSN) Biglarian, H ; Abbaspour, M ; Saidi, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The performance of a vertical ground source heat pump system (GSHPS) largely depends on the fluid temperature leaving the borehole heat exchanger (BHE) that may be affected by the short-term behavior of the BHE. Although considerable research has been carried out to analyze the short-term transient response of the BHEs, few studies have investigated its impact on dynamic simulation of GSHPS. Therefore, this paper presents a numerical approach based on a transient BHE model to evaluate the performance of a residential GSHPS over short and long timescales. The numerical results are compared with the results of EnergyPlus software. It is shown that the proposed model can appropriately predict... 

    Economic and environmental assessment of a solar-assisted ground source heat pump system in a heating-dominated climate

    , Article International Journal of Environmental Science and Technology ; 2018 , Pages 1-8 ; 17351472 (ISSN) Biglarian, H ; Saidi, M. H ; Abbaspour, M ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2018
    Abstract
    In recent years, increasing attention has been paid to the use of renewable energy sources in building sector. The ground source heat pumps are a promising alternative for heating and cooling applications. Despite the high coefficients of performance and significant environmental benefits, their performance may deteriorate over the long-term operation if the annual ground loads are not well balanced. An appropriate solution is the use of hybrid ground source heat pump system through which some portion of the thermal loads can be offset by supplemental components. The aim of this study is to assess the feasibility of a solar-assisted ground source heat pump system for heating a detached house... 

    A numerical model for transient simulation of borehole heat exchangers

    , Article Renewable Energy ; Volume 104 , 2017 , Pages 224-237 ; 09601481 (ISSN) Biglarian, H ; Abbaspour, M ; Saidi, M. H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A numerical model is developed to simulate the borehole heat exchanger both in the short and long time. In this regard, the computational domain is divided into the inside and outside borehole regions. A two-dimensional finite volume method is implemented in a cylindrical coordinate system for modeling of the outside borehole. Also, a thermal resistance-capacity model is presented for the borehole cross section. This model is extended to take into account the fluid transport through the U-tube and the temperature variation of the borehole components with depth. The governing equations of the two regions are solved iteratively in each time step. The proposed model is verified with the... 

    Economic and environmental assessment of a solar-assisted ground source heat pump system in a heating-dominated climate

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 7 , 2019 , Pages 3091-3098 ; 17351472 (ISSN) Biglarian, H ; Saidi, M. H ; Abbaspour, M ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    In recent years, increasing attention has been paid to the use of renewable energy sources in building sector. The ground source heat pumps are a promising alternative for heating and cooling applications. Despite the high coefficients of performance and significant environmental benefits, their performance may deteriorate over the long-term operation if the annual ground loads are not well balanced. An appropriate solution is the use of hybrid ground source heat pump system through which some portion of the thermal loads can be offset by supplemental components. The aim of this study is to assess the feasibility of a solar-assisted ground source heat pump system for heating a detached house... 

    Atheroprone sites of coronary artery bifurcation: Effect of heart motion on hemodynamics-dependent monocytes deposition

    , Article Computers in Biology and Medicine ; Volume 133 , 2021 ; 00104825 (ISSN) Biglarian, M ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Atherosclerosis as a common cardiovascular disease is a result of both adverse hemodynamics conditions and monocyte deposition within coronary arteries. It is known that the adhesion of monocytes on the arterial wall and their interaction with the vascular surface are one of the main parameters in the initiation and progression of atherosclerosis. In this work, hemodynamic parameters and monocyte deposition have been investigated in a 3D computational model of the Left Anterior Descending coronary artery (LAD) and its first diagonal branch (D1) under the heart motion. A one-way Lagrangian approach is performed to trace the monocyte particles under different blood flow regimes and heart motion... 

    Prediction of erosive wear locations in centrifugal compressor using CFD simulation and comparison with experimental model

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 2 , 2019 ; 16785878 (ISSN) Biglarian, M ; MomeniLarimi, M ; Ganji, B ; Ranjbar, A ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Erosive wear is one of the efficiency reduction causes in centrifugal compressors. The presence of suspended solid particles in the fluid causes deformations in different parts of the compressor, especially blades of the impeller. Therefore, erosion not only decreases the part lifetime by destruction of blades form, but also increases energy losses. For this reason, specifying the erosion locations and choosing a suitable material have an important effect on optimum functionality of the machine. In this paper, erosion locations of a compressor impeller by using computational fluid dynamics (CFD) in high temperature and pressure are attained and compared with experimental model. The... 

    H2O based different nanofluids with unsteady condition and an external magnetic field on permeable channel heat transfer

    , Article International Journal of Hydrogen Energy ; Volume 42, Issue 34 , 2017 , Pages 22005-22014 ; 03603199 (ISSN) Biglarian, M ; Rahimi Gorji, M ; Pourmehran, O ; Domairry, G ; Sharif University of Technology
    2017
    Abstract
    This paper investigates numerically the problem of unsteady magnetohydrodynamic nanofluid flow and heat transfer between parallel plates due to the normal motion of the porous upper plate. The governing equations are solved via the fourth-order Runge-Kutta method. Different kind of nanoparticles is examined. The effects of kind of nanoparticle, nanofluid volume fraction, expansion ratio, Hartmann number, Reynolds number on velocity and temperature profiles are considered. Also effect of different types of nanoparticles is examined. Results indicate that velocity decreases with increase of Hartmann number due to effect of Lorentz forces. Rate of heat transfer increase with increase of... 

    Numerical study of the effect of hemodynamic variables on LDL concentration through the single layer of the Left Anterior Descending coronary artery (LAD) under the heart pulse

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 236, Issue 7 , 2022 , Pages 994-1008 ; 09544119 (ISSN) Biglarian, M ; Seyedhossein, S. S ; Firoozabadi, B ; MomeniLarimi, M ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Heart attack is one of the most common causes of death in the world. Coronary artery disease is the most recognized cause of heart attack whose onset and progression have been attributed to low-density lipoprotein (LDL) passing through the wall of the artery. In this paper, hemodynamic variables as well as the concentration of LDL through the coronary porous artery at the Left Anterior Descending coronary artery (LAD), and its first diagonal branch (D1) under the heart motion investigated using computational simulation. The geometry that has been studied in this paper is the first bifurcation of Left Anterior Descending (LAD) that has been placed on a perimeter of hypothetical sphere... 

    Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM

    , Article Journal of Central South University ; Volume 24, Issue 3 , 2017 , Pages 675-682 ; 20952899 (ISSN) Mosayebidorcheh, S ; Rahimi Gorji, M ; Ganji, D. D ; Moayebidorcheh, T ; Pourmehran, O ; Biglarian, M ; Sharif University of Technology
    Central South University of Technology  2017
    Abstract
    This work focuses on transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties. A hybrid numerical algorithm which combines differential transformation (DTM) and finite difference (FDM) methods is utilized to theoretically study the present problem. DTM and FDM are applied to the time and space domains of the problem, respectively. The accuracy of this method solution is checked against the numerical solution. Then, the effects of some applicable parameters were studied comparatively. Since a broad range of governing parameters are investigated, the results could be useful in a number of industrial and engineering... 

    Study of Capillary Pressure Effect on Multiphase Flow in Hydrocarbon Reservoirs

    , M.Sc. Thesis Sharif University of Technology Biglarian, Hassan (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    One of the most important issues in the petroleum industry, is how to increase the oil production from hydrocarbon reservoirs. The optimum design of an enhanced oil recovery process needs the knowledge on the physical phenomena of the working flow in oil reservoirs. An important aspect of any oil recovery process is the effectiveness of process fluid in removing oil from the rock pores at microscopic scales, in a way that it determines the success or failure of the recovery process. Meanwhile, one of the most important factors on the fluid mobility and as a result the microscopic mobility efficiency is the pressure difference between different phases in narrow paths of porous media. This... 

    Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts

    , Article Journal of Thermal Analysis and Calorimetry ; 2017 , Pages 1-19 ; 13886150 (ISSN) Hosseinnezhad, R ; Akbari, O. A ; Hassanzadeh Afrouzi, H ; Biglarian, M ; Koveiti, A ; Toghraie, D ; Sharif University of Technology
    2017
    Abstract
    In the present study, the turbulent flow of water/Al2O3 nanofluid in a tubular heat exchanger with two twisted-tape inserts has been numerically investigated in the three-dimensional coordinate. This numerical simulation has been done by using FVM, and all of the equations have been discretized by second-order upwind method. For coupling velocity–pressure equations, SIMPLEC algorithm has been used. The investigated parameters of the present study are Reynolds numbers at the range of 10,000–30,000, the effect of twist ratio of twisted-tape inserts from 2.5 to 4, co-swirl flow and counter-swirl flow of two twisted-tapes inside the tube and volume fractions of nanofluid from 1 to 4%. The... 

    Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 132, Issue 1 , April , 2018 , Pages 741-759 ; 13886150 (ISSN) Hosseinnezhad, R ; Akbari, O. A ; Hassanzadeh Afrouzi, H ; Biglarian, M ; Koveiti, A ; Toghraie, D ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    In the present study, the turbulent flow of water/Al2O3 nanofluid in a tubular heat exchanger with two twisted-tape inserts has been numerically investigated in the three-dimensional coordinate. This numerical simulation has been done by using FVM, and all of the equations have been discretized by second-order upwind method. For coupling velocity–pressure equations, SIMPLEC algorithm has been used. The investigated parameters of the present study are Reynolds numbers at the range of 10,000–30,000, the effect of twist ratio of twisted-tape inserts from 2.5 to 4, co-swirl flow and counter-swirl flow of two twisted-tapes inside the tube and volume fractions of nanofluid from 1 to 4%. The... 

    The effect of the second excitation frequency mode under different conditions on the fluid streaming and microparticles acoustophoresis with the aim of separating biological cells

    , Article Computer Methods and Programs in Biomedicine ; Volume 184 , 2020 Hosseini, M ; Hasani, M. A ; Biglarian, M ; Amoei, A. H ; Toghraie, D ; Mehrizi, A. A ; Rostami, S ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and objective: In this study, the effect of the second excitation frequency mode under different conditions on the fluid streaming and its microparticles displacement is investigated. Methods: For this purpose, some variable parameters such as the particle diameter, microchannel aspect ratio, and applied frequency modes have been selected to study. The resulted acoustic streaming was scrutinized to understand the physics of the problem under different geometrical and input conditions. Finally, the effect of the increasing the microparticle size and aspect ratio of the microchannel, simultaneously, has been evaluated. Results: The results demonstrated that increasing the... 

    Computational investigation of stenosis in curvature of coronary artery within both dynamic and static models

    , Article Computer Methods and Programs in Biomedicine ; Volume 185 , 2020 Biglarian, M ; Momeni Larimi, M ; Hassanzadeh Afrouzi, H ; Moshfegh, A ; Toghraie, D ; Javadzadegan, A ; Rostami, S ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and Objective: Blood flow variation during cardiac cycle is the main mechanism of atherosclerotic development which is dependent on. Methods: The present work mainly tends to investigate stenosis effect in dynamic curvature of coronary artery. This paper presents numerical investigations on wall shear stress profiles in three-dimensional pulsatile flow through curved stenotic coronary arteries for both static and dynamic model. In order to do so, three-dimensional models related to the curved arteries with two degrees of stenosis (30% and 50%). Results: Lower amount of wall shear stress is found near the inner wall of artery distal to the plaque region (stenosis) and in both... 

    Modeling Flow and Fat Particle Deposition in Coronary Arteries

    , M.Sc. Thesis Sharif University of Technology Biglarian, Mohit (Author) ; Firoozabadi, Bahar (Supervisor) ; Saeedi, Mohammad Saeed (Co-Advisor)
    Abstract
    In this thesis, flow hemodynamic parameters and white blood cell deposition on the 3- D of coronary artries of heart coronary walls are studied. At first, numerical simulation of blood flow and without the presence of white cells is performed. Then, using the Lagrangian approach, white blood cells as solid particles are tracked considering forces such as drag force, weight, buoyancy, Saffman lift force, virtual mass in one way coupling method. this particle representive of white blood cells and play significant role in low density lipoprotein (LDL) deposition.The results show that a low shear region occurs on myocardial wall. maximum flow velocity near the bifurcation towards epicardial wall... 

    Modeling of a Hybrid Ground Source Heat Pump System with Solar Thermal Collector and Phase Change Materials

    , Ph.D. Dissertation Sharif University of Technology Biglarian, Hassan (Author) ; Abbaspour, Majid (Supervisor) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    In recent years, ground source heat pumps (GSHPs) have received increasing attention for space heating and cooling, and domestic hot water production due to their high energy performance and low environmental impacts. The most common type of ground heat exchanger used in the GSHP systems is borehole heat exchanger (BHE) that consists of U-shaped tubes placed in the vertical boreholes. In this system, the heat is absorbed from or rejected to the ground by circulation of a fluid through the ground loop. The GSHP systems provide high seasonal performance factors when the ground loads are well balanced over the year. However, most buildings in cold or hot climates have unbalanced loads. When the... 

    Estimation of Ground Thermal Properties Using Inverse Heat Transfer Techniques

    , M.Sc. Thesis Sharif University of Technology Ilbeygi, Amirhosein (Author) ; Hakkakifard, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor) ; Biglarian, Hassan (Co-Supervisor)
    Abstract
    Ground-Source Heat Pumps (GSHPs) are efficient means of space heating and cooling. However, owing to their high installation costs, their development in societies has not grown as it should. Therefore, it is crucial to have a meticulous design of these systems. The first step in designing GSHPs is determining the ground and grout thermal properties. Thermal Response Tests (TRTs) are developed for this purpose. The previous methods of estimating the unknown thermal properties are either computationally inefficient or yield inaccurate estimates for the ground volumetric heat capacity, to which the mean fluid temperature has the slightest sensitivity among all thermal properties. Among previous... 

    Probability of missed detection as a criterion for receiver placement in MIMO PCL

    , Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) Majd, M. N ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar  

    An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation

    , Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) Ghazanfari, D ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
    2008
    Abstract
    SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity  

    MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak

    , Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function...