Loading...
Search for: chaharlang-kiani--kiarash
0.198 seconds

    A broad reconsideration of anti-vortex film cooling method using numerical optimization and an improved heat-flux model

    , Article International Journal of Heat and Fluid Flow ; Volume 89 , 2021 ; 0142727X (ISSN) Chaharlang Kiani, K ; Mazaheri, K ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This paper represents the detailed results of an evolutionary optimization framework towards the exploration of vortex mechanisms leading to effective anti-vortex film cooling. In this regards, several arrangements of triple cooling holes were studied on flat and curved geometries using differential-evolution optimization algorithm and a modified Reynolds-stress based flow solver. Depending on the flow and geometric parameters, four distinct types of vortex interaction with different cooling mechanisms were identified. The vortex-trapping mechanism, observed in the optimized upstream arrangement acts through imposing a mild downwash over the main counter-rotating vortex pair and provides the... 

    Passenger Aircrafts Wing Sections Optimization Using Shock Control Bump

    , M.Sc. Thesis Sharif University of Technology Chaharlang Kiani, Kiarash (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    The development of the boundary layer and shock boundary layer interaction essentialy determine the performance boundaries of transonic aircrafts. Employing shock and boundary layer control has therefore a large potential for improving flight performance. Aerodynamic surfaces of these aircrafts usually have very closed design points and critical points so small changes in angle of attack and free stream mach number cause entering drag divergence. Adaptive wings are the aerodynamic surfaces that use additional devices to control the flow pattern for improvment of aerodynamic performance in different flight conditions. Shock Control Bump is a control mechanism that is used for shock wave... 

    Simulation of DBD plasma actuator effect on aerodynamic performance improvement using a modified phenomenological model

    , Article Computers and Fluids ; Volume 140 , 2016 , Pages 371-384 ; 00457930 (ISSN) Mazaheri, K ; Omidi, J ; Chaharlang Kiani, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    An improved phenomenological model is presented for numerical simulation of a Dielectric Barrier Discharge (DBD) plasma actuator for separation control of high angle of attack flow over a wind turbine airfoil. Based on existing numerical models and experimental measurements, a new model is proposed for prediction of the length of a plasma extent which is more consistent with previous observations. The electrical and hydrodynamic solvers used in the present study are validated against published experimental data. Then the applicability of a DBD actuator, mounted on a DU 91-W2-250 airfoil is extensively analyzed for a wide range of operating voltages and frequencies. The analysis is completely... 

    Application of the adjoint multi-point and the robust optimization of shock control bump for transonic aerofoils and wings

    , Article Engineering Optimization ; Volume 48, Issue 11 , 2016 , Pages 1887-1909 ; 0305215X (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    A shock control bump (SCB) is a flow control method which uses a local small deformation in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, both equally and variably weighted multi-point optimization and a robust adjoint optimization scheme are used to optimize the SCB. The numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm are used to find the optimum location and shape of the SCB for two benchmark aerofoils. A multi-point optimization method under a constant-lift-coefficient constraint is... 

    A coupled adjoint formulation for non-cooled and internally cooled turbine blade optimization

    , Article Applied Thermal Engineering ; Volume 105 , 2016 , Pages 327-335 ; 13594311 (ISSN) Zeinalpour, M ; Mazaheri, K ; Chaharlang Kiani, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Most researches on the application of the adjoint method in turbine blade design are concentrated on the aerodynamic shape optimization without considering the heat transfer to/from the blade material. In this study, the adjoint method is extended to the conjugate heat transfer problems in which the viscous flow field is coupled to heat transfer in the solid region. Introducing a new adjoint variable in the solid domain, a heat adjoint equation is derived which is coupled with the energy adjoint equation in the fluid zone at the fluid/solid interface. The detailed mathematical description associated with the derivation of the heat adjoint equation with corresponding boundary conditions are... 

    The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    , Article Shock Waves ; 2015 ; 09381287 (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Taheri, R ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    A shock control bump (SCB) is a flow control method which uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB which are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and... 

    The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    , Article Shock Waves ; Volume 26, Issue 4 , 2016 , Pages 491-511 ; 09381287 (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Taheri, R ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    A shock control bump (SCB) is a flow control method that uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB that are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and... 

    Numerical Analysis and Optimization of Anti-vortex Holes for Film Cooling

    , Ph.D. Dissertation Sharif University of Technology Chaharlang Kiani, Kiarash (Author) ; Mazaheri, Karim (Supervisor) ; Karimi, Mohsen (Co-Supervisor)
    Abstract
    The present thesis is devoted to deeply reconsider the anti-vortex film cooling method and its undiscovered features using numerical optimization and advanced turbulence models. In this regards, a modified turbulent heat-flux model was developed to enhance the predictions in complex flow fields with highly anisotropy and non-equilibrium flow/thermal features. Next, the model was introduced to ANSYS FLUENT 16.0 package to prepare a more accurate flow solver. Then, the solver was coupled with an in-house Differential-Evolution (DE) optimization algorithm to find the optimum configurations of anti-vortex holes for several flow and geometric conditions such as flat-plate, convex/concave surfaces... 

    Reliability-Based Seismic Loss Assessment of Eccentrically Braced Frame Buildings

    , M.Sc. Thesis Sharif University of Technology Godazgar, Behfar (Author) ; Dolatshahi, Kiarash (Supervisor)
    Abstract
    In this research, seismic loss of eccentrically braced frame buildings is assessed by using reliability methods. For this end, first, Bayesian linear regression is utilized to characterize the epistemic uncertainty of the problem in the form of damage models. The input of these models are mechanical and physical properties of the components, and the outputs are damage ratios. In the second step, by using the developed models and the comprehensive library of probabilistic models of Rt, reliability analysis is conducted on 4, 8, and 16 stories building located in San Jose. The limit state function is seismic loss, including repair loss, collapse loss, and demolition loss, and analysis method... 

    Degradation Effects on Seismic Behavior of Soil-structure System

    , M.Sc. Thesis Sharif University of Technology Vafaei, Amir (Author) ; Mohtasham Dolatshahi, Kiarash (Supervisor)
    Abstract
    Up till now, various contributions of research to soil-structure-interaction context have been primarily focused on structural systems exhibiting elastic-perfectly plastic material behavior. In this paper, combined effects of material degradation, p-delta, and soil-structure-interaction considering foundation uplift have been deemed to determine seismic response of a single degree of freedom system. The system is composed of a column with a lumped mass on top that is placed on a rigid foundation. The foundation is mounted on Winkler springs and dashpots to account for soil-foundation compliance and material/radiational damping. The springs are tensionless to guarantee that uplift phenomenon... 

    Predictive Equations for Shear Link Modeling Toward Collapse

    , M.Sc. Thesis Sharif University of Technology Moammer, Omid (Author) ; Mohtasham Dolatshahi, Kiarash (Supervisor)
    Abstract
    In this paper the predictive equations for collapse assessment of shear links used in eccentric braced frames are developed. An extensive database including results of over 70 cyclic tests on steel wide flange shear links is collected and the structural parameters governing the hysteresis behavior are calibrated using a simplified numerical model. The methodology of calibration is to minimize the discrepancy between the experimental hysteresis loops and the corresponding numerical results using Particle Swarm Optimization (PSO) algorithm. The objective function of PSO algorithm is minimized by iterating parameters that govern the hysteresis behavior of the numerical model. Stepwise... 

    Damage Assessment of Reinforced Concrete Shear walls Using Crack Pattern

    , M.Sc. Thesis Sharif University of Technology Momeni, Hamed (Author) ; Mohtasham Dolatshahi, Kiarash (Supervisor)
    Abstract
    The purpose of this paper is to quantify the extent of damage of rectangular reinforced concrete shear walls after an earthquake using surface crack patterns. One of the most important tasks after an earthquake is to assess the safety and classify the performance level of buildings. This assessment is usually performed by visual inspection that is prone to significant errors. In this research, an extensive database on the images of damaged rectangular reinforced concrete shear walls is collected from the literature. This database includes more than 200 images from experimental quasi-static cyclic tests. Using the concept of Fractal geometry, several probabilistic models are developed by... 

    Numerical Study of Two Novel Metallic Dampers with Torsional Mechanism

    , M.Sc. Thesis Sharif University of Technology Khalooei, Shayan (Author) ; Mohtashm Dolatshahi, Kiarash (Supervisor)
    Abstract
    The aim of this study is introducing and assessing two torsion-based metallic dampers which are named Torsional Disc and Torsional Cylinder dampers based on their geometry and energy absorption mechanisms. As expected, a steel disc and a steel cylinder are exposed to torsion in the Torsional Disc and Torsional Cylinder dampers respectively, and energy absorption occurs through torsional yielding of those two elements. In the introduction section, a mechanism is introduced to put the dampers under pure torsion so as to yield a desirable performance. The dampers are designed to be placed between Chevron braces and the floor beam, and the pure torsion is exerted, through the mentioned... 

    Multivariable Fragility Curves for Unreinforced Masonry Walls

    , M.Sc. Thesis Sharif University of Technology Rezaei, Samaneh (Author) ; Mohtasham Dolatshahi, Kiarash (Supervisor)
    Abstract
    This study investigates the effect of the variation of the properties of unreinforced brick masonry walls, such as aspect ratio, prism strength, and axial load ratio, on determining the post-earthquake damage states of the walls using fragility curves. A database comprising 245 damaged unreinforced masonry walls is collected that have been tested under the quasi-static cyclic loads up to more than three percent drift ratios. The collected walls are categorized into four damage states according to the resisting lateral force during the cyclic loading obtained from the backbone of the hysteresis curves. Then, multivariable fragility surfaces based on the drift ratio and design properties of... 

    Backbone Curve Prediction for Unreinforced Masonry Walls using Geometrical and Mechanical Properties

    , M.Sc. Thesis Sharif University of Technology Saeedi, Sepehr (Author) ; Mohtasham Dolatshahi, Kiarash (Supervisor)
    Abstract
    This thesis introduces an interpretable data-driven approach to reconstructing the complete backbone curve of unreinforced masonry (URM) walls using the structural properties as inputs. The framework utilizes supervised and unsupervised learning combined with autoencoder neural networks. The dataset used to develop the predictive model includes crack texture images, design, and mechanical properties, as well as the backbone curves associated with 165 URM walls subjected to quasi-static cyclic loading. Most of the walls in the experimental database experienced hybrid failure modes. Therefore, autoencoder networks are used to extract informative features from the backbone curves, which are... 

    Nonmodel Seismic Assessment of Eccentrically Braced Steel Frames with Masonry Infills Using Machine Learning Techniques

    , M.Sc. Thesis Sharif University of Technology Chalabi, Romina (Author) ; Mohtasham Dolatshahi, Kiarash (Supervisor)
    Abstract
    This study investigates the seismic behavior of eccentrically braced frames (EBFs) taking into account the influence of masonry infill walls. The primary objectives of the study are to predict the seismic global response and develop associated fragility curves using a nonmodel scenario-based machine learning framework. To model the infill walls, equivalent diagonal struts are employed, and a nonlinear pushover analysis is conducted to assess the overall impact of infills on 4- and 8-story EBF structures. An extensive database of 4 bare and 48 infilled EBFs with various infill properties is assembled to predict story-based engineering demand parameters (EDPs) containing peak and residual... 

    Backbone Curve Prediction for Reinforced Concrete Shear Walls Using Data-Driven Methods

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Pouya (Author) ; Mohtasham Dolatshahi, Kiarash (Supervisor)
    Abstract
    The aim of this research is to predict the backbone curve of reinforced concrete shear walls by identifying different failure modes. Failure mode identification is performed by measuring the contribution percentage of flexure, shear, and combined flexure-shear failure modes in the force-displacement response of the wall under cyclic loading. The approach used in this research is a probabilistic and data-driven method, which leads to the calculation of model uncertainty in detecting the wall's failure mode and, consequently, the prediction uncertainty of the backbone curve. The database used in this research consists of 253 reinforced concrete shear walls, obtained from a review of existing... 

    Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 42, Issue 9 , 2010 , Pages 2391-2401 ; 13869477 (ISSN) Kiani, K ; Sharif University of Technology
    2010
    Abstract
    Single-walled carbon nanotubes (SWCNTs) can be promising delivery nanodevices for a diverse range of applications, however, little is known about their dynamical interactions with moving nanoscale particles. In this paper, dynamic response of a SWCNT subjected to a moving nanoparticle is examined in the framework of the nonlocal continuum theory of Eringen. The inertial effects of the moving nanoparticle and the existing friction between the nanoparticle surface and the inner surface of the SWCNT are incorporated in the formulation of the problem. The equivalent continuum structure associated with the SWCNT is considered and modeled using nonlocal Rayleigh beam theory under simply supported... 

    Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 43, Issue 1 , November , 2010 , Pages 387-397 ; 13869477 (ISSN) Kiani, K ; Sharif University of Technology
    2010
    Abstract
    The free longitudinal vibration of tapered nanowires is investigated in the context of nonlocal continuum theory. The problem is studied for the nanowires with linearly varied radii under fixedfixed and fixedfree boundary conditions. In order to assess the problem in a more general form, a perturbation technique is proposed based on the Fredholm alternative theorem. The natural frequencies, corresponding mode shapes, and phase velocities of the tapered nanowires are derived analytically up to the second-order perturbation for different boundary conditions. The predicted results by the perturbation technique are successfully verified with those of the exact solution. The obtained results... 

    A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect

    , Article International Journal of Mechanical Sciences ; Volume 52, Issue 10 , 2010 , Pages 1343-1356 ; 00207403 (ISSN) Kiani, K ; Sharif University of Technology
    2010
    Abstract
    A single-walled nanotube structure embedded in an elastic matrix is simulated by the nonlocal EulerBernoulli, Timoshenko, and higher order beams. The beams are assumed to be elastically supported and attached to continuous lateral and rotational springs to take into account the effects of the surrounding matrix. The discrete equations of motion associated with free transverse vibration of each model are established in the context of the nonlocal continuum mechanics of Eringen using Hamilton's principle and an efficient meshless method. The effects of slenderness ratio of the nanotube, small scale effect parameter, initial axial force and the stiffness of the surrounding matrix on the natural...