Loading...
Search for: daneshyar--a
0.119 seconds

    3D Modeling of Damage and Cracking in Anisotropic Concrete and its Application in Seismic Analysis of Dams

    , Ph.D. Dissertation Sharif University of Technology Daneshyar, Alireza (Author) ; Ghaemian, Mohsen (Supervisor)
    Abstract
    A finite element model for seismic analysis of concrete arch dams is proposed. Material inelasticity as well as joints nonlinearity is considered. In order to provide a precise description of concrete response, a novel plastic-damage constitutive model for plain concrete is developed. For this purpose, the microplane theory is proposed for overcoming the deficiency of available anisotropic continuum plastic-damage models in reproducing the true anisotropic nature of damage in multidimensional loadings.Based on the microplane theory, the degeneration process in concrete is considered along with plastic deformations. Using the principle of strain energy equivalence, a transformation between... 

    Seismic analysis of arch dams using anisotropic damage-plastic model for concrete with coupled adhesive-frictional joints response

    , Article Soil Dynamics and Earthquake Engineering ; Volume 125 , 2019 ; 02677261 (ISSN) Daneshyar, A ; Ghaemian, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A finite element model for seismic analysis of concrete arch dams is proposed. Material inelasticity as well as joints nonlinearity is considered. A damage-plastic formulation governs nonlinear behavior of concrete. Degeneration occurring during nonlinear behavior of concrete induces anisotropy into its microstructure. This anisotropy becomes more complex in seismic simulations, in which the state of stress expeditiously changes with time. Thus, anisotropic formulation is preferred over classical isotropic models. Utilizing rate-dependent anisotropic damage-plastic model, irreversible deformations, stiffness degeneration, induced anisotropy, closing/reopening of cracks, and viscous response... 

    FE 2 investigation of aggregate characteristics effect on fracture properties of concrete

    , Article International Journal of Fracture ; Volume 226, Issue 2 , 2020 , Pages 243-261 Daneshyar, A ; Ghaemian, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2020
    Abstract
    The relation between aggregate characteristics and fracture properties of concrete mixtures is investigated numerically. A homogenization-based multiscale approach is introduced based on objective failure zone averaging for heterogeneous meso-structure, and traction–separation law of fracture process zone (FPZ) instead of phenomenological constitutive model for macro-structure. A rate-dependent anisotropic damage-plastic formulation is employed to reproduce degradation process in the fine-scale from diffuse damage to localized bands, and extended finite element method (X-FEM) is utilized to resemble the localized region as a macro-crack within the coarse-scale. Different aggregate types are... 

    Coupling microplane-based damage and continuum plasticity models for analysis of damage-induced anisotropy in plain concrete

    , Article International Journal of Plasticity ; Volume 95 , 2017 , Pages 216-250 ; 07496419 (ISSN) Daneshyar, A ; Ghaemian, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A novel plastic-damage constitutive model for plain concrete is developed in this paper. For this purpose, the microplane theory is proposed for overcoming the deficiency of available anisotropic continuum plastic-damage models in reproducing the true anisotropic nature of damage in multidimensional loadings. Based on the microplane theory, the degeneration process in concrete is considered along with plastic deformations. Using the principle of strain energy equivalence, a transformation between the nominal and effective states of material is achieved, that results in a decoupled formulation for damage and plasticity. A yield function with multiple internal variables and a non-associative... 

    A general solution procedure for the scaled boundary finite element method via shooting technique

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 384 , 2021 ; 00457825 (ISSN) Daneshyar, A ; Ghaemian, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The scaled boundary finite element method (SBFEM) is known for its inherent ability to simulate unbounded domains and singular fields, and its flexibility in the meshing procedure. Keeping the analytical form of the field variables along one coordinate intact, it transforms the governing partial differential equations of the problem into a system of one-dimensional (initial–)boundary value problems. However, closed-form solution of the said system is not available for most cases (e.g. transient heat transfer, acoustics, ultrasonics, etc.) since the system cannot be diagonalized in general. This paper aims to establish a numerical tool within the context of the shooting technique to evaluate... 

    A shooting approach to the scaled boundary finite element equations of elastodynamics in the frequency domain

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 387 , 2021 ; 00457825 (ISSN) Daneshyar, A ; Sotoudeh, P ; Ghaemian, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Dealing with numerical analysis of problems, especially ones with semi-infinite boundaries, scaled boundary finite element method has emerged as one of the efficient tools for the task. Combining the exactness of strong forms with the flexibility of weak formulations makes the method an improvement to its predecessors. Problem with the method arises when the analytical solution of the semi-discretized system is not available, which is the case for numerous problems. In the most recent attempt to solve the issue, a shooting method was proposed for elastostatic problems. Generality of the method removes any concerns regarding the type of governing equations since it no longer needs any... 

    Effect of seismic wave propagation in massed medium on rate-dependent anisotropic damage growth in concrete gravity dams

    , Article Frontiers of Structural and Civil Engineering ; Volume 15, Issue 2 , 2021 , Pages 346-363 ; 20952430 (ISSN) Daneshyar, A ; Mohammadnezhad, H ; Ghaemian, M ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    Seismic modeling of massive structures requires special caution, as wave propagation effects significantly affect the responses. This becomes more crucial when the path-dependent behavior of the material is considered. The coexistence of these conditions renders numerical earthquake analysis of concrete dams challenging. Herein, a finite element model for a comprehensive nonlinear seismic simulation of concrete gravity dams, including realistic soil-structure interactions, is introduced. A semi-infinite medium is formulated based on the domain reduction method in conjunction with standard viscous boundaries. Accurate representation of radiation damping in a half-space medium and wave... 

    Wave propagation in a three-dimensional half-space with semi-infinite irregularities

    , Article Waves in Random and Complex Media ; 2021 ; 17455030 (ISSN) Daneshyar, A ; Sotoudeh, P ; Ghaemian, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Dynamic analysis of problems with complex geometries requires utilization of numerical methods. To completely capture the effects of seismic wave propagation in a system, one must consider the structure or irregularity within its encompassing half-space. Correct consideration of half-space in a numerical model is important specially when it comes to cases where the half-space contains semi-infinite irregularities. In this study, a generalized numerical methodology is presented for dynamic analysis of a half-space with semi-infinite irregularities. The methodology is first verified through comparison with analytical solution of known problems. Then the method is employed to solve the dynamic... 

    Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) Zareh, S. H ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
    2012
    Abstract
    A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network... 

    Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend

    , Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the... 

    A comparative study of the performance of a SI engine fuelled by natural gas as alternative fuel by thermodynamic simulation

    , Article 2009 ASME Internal Combustion Engine Division Fall Technical Conference, ICEF 2009, Lucerne, 27 September 2009 through 30 September 2009 ; 2009 , Pages 49-57 ; 9780791843635 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2009
    Abstract
    With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1-5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost... 

    Analytical and experimental analyses of nonlinear vibrations in a rotary inverted pendulum

    , Article Nonlinear Dynamics ; Volume 107, Issue 3 , 2022 , Pages 1887-1902 ; 0924090X (ISSN) Dolatabad, M.R ; Pasharavesh, A ; Khayyat, A. A. A ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Gaining insight into possible vibratory responses of dynamical systems around their stable equilibria is an essential step, which must be taken before their design and application. The results of such a study can significantly help prevent instability in closed-loop stabilized systems by avoiding the excitation of the system in the neighborhood of its resonance. This paper investigates nonlinear oscillations of a rotary inverted pendulum (RIP) with a full-state feedback controller. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model, whose parameter values are extracted by both the measurement and 3D modeling of the real system components. Although the governing... 

    A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils

    , Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 Pirjalili, A ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
    ASTM International  2020
    Abstract
    A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring... 

    Gum tragacanth gels as a new supporting matrix for immobilization of whole-cell

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 24, Issue 4 , 2005 , Pages 1-7 ; 10219986 (ISSN) Otady, M ; Vaziri, A ; Seifkordi, A. A ; Kheirolomoom, A ; Sharif University of Technology
    2005
    Abstract
    We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G acylase (PGA) activity. The results show that GT beads can not only serve as a proper matrix for immobilization, but show enhanced hydrolysis rate and stability compared to other immobilization systems used for this reaction. This signifies the potential of GT as a biocompatible matrix for... 

    True Class-E Design For Inductive Coupling Wireless Power Transfer Applications

    , Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) Haeri, A. A. R ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been... 

    Crashworthiness determination of side doors and B pillar of a vehicle subjected to pole side impact

    , Article Applied Mechanics and Materials ; Vol. 663, issue , 2014 , p. 552-556 Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2014
    Abstract
    Pole Side Impact Tes is one out of three crash tests described by Euro NCAP standard for star rating of a vehicle and is required for assessing the Adult Occupant Protection. In this paper the goal is to determine the crashworthiness of side doors and B pillar in a Pole Side Impact Test based on Euro New Car Assessment Program (Euro-NCAP) using computer and simulation method. In this matter, a vehicle model has been prepared and meshed using Hypermesh and CATIA. The velocity of 29 km/h has been assigned to the vehicle which was on top of a cart while the pole has been assigned as a rigid static object based on Euro NCAP requirements specifically. Results show that different amounts of energy... 

    Investigation of Thickness Influences On Energy Absorption For Side Doors And B Pillar In Euro NCAP Pole Side Impact Test

    , Article Applied Mechanics and Materials ; Vol. 663, issue , Oct , 2014 , p. 585-589 Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2014
    Abstract
    To assess a car under the Euro New Car Assessment Program (Euro-NCAP), Adult Occupant Protection is one out of three parameters which need to be calculated with a weight factor of 50% while the other parameters, Child Occupant Protection and Pedestrian Occupant Protection, have a weight factor of 20%. The Pole Side Impact Test, beside two other tests, Side and Front Impact, is also required to calculate the Adult Occupant Protection. It shows how important the Pole Side Impact Test is and what an effective role it has in the car rating assessment. In this paper, the objective is to evaluate the effect of thickness on the energy absorbed by the side doors and the B pillar and its... 

    Crashworthiness determination for front and rear doors and B pillar subjected to side impact crash by a mobile deformable barrier

    , Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 392-395 ; 19366612 (ISSN) Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2013
    Abstract
    In Euro NCAP standard, adult protection is one of the most important rating scores with 50% weight factor while child protection and pedestrian protection are accounted into consideration with 20% weight factor. For adult protection testing, three tests are required to perform: (1) side impact, (2) pole impact, (3) front impact. In the side impact test, dummy's head, chest, shoulder, thorax, ribs, abdomen, pelvic and femur must be studied to evaluate the rating score. Crashworthiness of a car during side impact can describe the score rated for that car. In this paper the goal is to determine the crashworthiness of side doors and B-pillar in side impact crash est by simulation using LS DYNA... 

    Effect of material and thickness of side doors and B pillar on crashworthiness in euro NCAP side impact crash test

    , Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 420-424 ; 19366612 (ISSN) Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2013
    Abstract
    In side impact test which is one out of three tests of Euro NCAP standard, front and rear doors and B pillar are most absorbance parts among vehicle body parts. Passengers are highly in danger while side crash, because of the distance between passenger's head and vehicle body. In this paper effect of material and thickness of doors and B-pillar and their absorbed energy during crash and improvement of its crashworthiness with respect to light weight design are studied using LS DYNA solver. The objective of this paper is to propose a material for doors and B-pillar with a specified thickness to achieve maximum absorbed energy and minimum weight. The shape of the doors and B-pillar remains... 

    Effect of recycle gas composition of the performance of Fischer-Tropsch catalyst

    , Article Petroleum Science and Technology ; Volume 28, Issue 5 , 2010 , Pages 458-468 ; 10916466 (ISSN) Rohani, A. A ; Khorashe, F ; Safekordi, A. A ; Tavassoli, A ; Sharif University of Technology
    2010
    Abstract
    In this study, the influence of CO2 and CH4 on the performance and selectivity of Co-Ru/Al2O3 catalyst is investigated by injection of these gases (0-20 vol.% of feed) to the feed stream. The effect of temperature and feed flow rate are also inspected. The results show that low amounts of CO2 in the feed stream do not change the catalyst activity, but increasing the amount of CO2 (more than 10 vol.%), causes the CO conversion to decrease and the selectivity of heavy components to increase. Methane acts as an inert gas and does not affect the catalyst performance. Increasing feed flow rate has a negative effect on both CO conversion and heavy component selectivity. By raising the temperature,...