Loading...
Search for: dehghani--a
0.263 seconds

    Photocatalytic degradation of vancomycin using titanium dioxide and optimization by central composite design

    , Article International Journal of Environmental Science and Technology ; Volume 19, Issue 9 , 2022 , Pages 8957-8968 ; 17351472 (ISSN) Dehghani, F ; Yousefinejad, S ; Dehghani, M ; Borghei, S. M ; Javid, A. H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Conventional wastewater treatment processes are not completely effective in removing vancomycin. In this study, affecting parameters on vancomycin degradation, such as pH, catalyst, initial vancomycin concentration, temperature, and reaction time were investigated simultaneously during a removal process based on titanium dioxide with ultraviolet irradiation in an aqueous solution. Titanium dioxide was synthesized and characterized using X-ray diffraction and scanning electron microscopy. The average size of the synthesized crystals was 4.7 (± 0.2) nm. Design of experiments was done by a central composite design based on the response surface methodology and multiple linear regression was... 

    Vancomycin removal using TiO2–clinoptilolite/UV in aqueous media and optimisation using response surface methodology

    , Article International Journal of Environmental Analytical Chemistry ; 2022 ; 03067319 (ISSN) Dehghani, F ; Yousefinejad, S ; Dehghani, M ; Borghei, S. M ; Javid, A. H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Investigations have shown the traces of antibiotics in surface water, groundwater, wastewater treatment plants, and drinking water. However, conventional wastewater treatment is not entirely effective for vancomycin degradation. Advanced oxidation is one of the most widespread methods of antibiotic degradation in aqueous media. Vancomycin was quantified by high-performance liquid chromatography. The Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to explore and optimise the effect of the independent variables on vancomycin degradation. Independent variables were as follows: pH (3–11), vancomycin concentration (15–75 mg/L), TiO2–clinoptilolite (25–125 mg in... 

    Modelling high-pressure plasma using the equivalent circuit model and the mechanisms of photoionization instability

    , Article Physica Scripta ; Volume 82, Issue 3 , 2010 ; 00318949 (ISSN) Dehghani, M ; Bahrampour, A. R ; Sharif University of Technology
    2010
    Abstract
    In this paper, the main discharge region and the plasma on the pre-ionization section in a TEA-CO2 laser are simulated by a distributed RLC electric circuit. The transmission line method is applied to the nonlinear distributed circuit, and it is approximated by a lumped nonlinear RLC circuit. By this method the governing partial differential equations are reduced to a system of ordinary differential equations. The parameters of the plasma in this laser are obtained by using this model. The possible photoionization instability is presented. To discuss the instability of the plasma, the current density perpendicular to the applied electric field is obtained. Furthermore, the electron... 

    Resonant light scattering toward optical fiber humidity sensors

    , Article Photonic Sensors ; Volume 9, Issue 1 , 2019 , Pages 60-68 ; 16749251 (ISSN) Dehghani Sanij, M ; Bahrampour, A ; Bahrampour, A. R ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The deposition of tetrakis (4-sulonatophenyl) porphyrin (TPPS) thin film on optical fibers presents many possibilities for sensing applications. The J-form aggregation with a narrow and sharp spectral feature at about 490 nm and its sensitivity to humidity have been discussed; a fast change of wavelength occurs according with variation in the humidity level. The reproducibility and high sensitivity of TPPS-coated fibers, along with the capabilities of optical fibers, suggest the device as a good candidate for humidity sensing in harsh environments. © 2018, The Author(s)  

    Fabrication and evaluation of in vitro studies of biodegradable and antibacterial composite scaffolds based on polylactic acid-polycaprolactone-hydroxyapatite reinforced with graphene and zinc oxide nanoparticles for use in orthopedic surgery

    , Article Iranian Journal of Materials Science and Engineering ; Volume 19, Issue 2 , 2022 , Pages 1-19 ; 17350808 (ISSN) Dehghani Firoozabadi, F ; Saadatabadi, A. R ; Asefnejad, A ; Sharif University of Technology
    Iran University of Science and Technology  2022
    Abstract
    Introduction: Fabrication of fully optimized tissue-engineered materials in order to simulating the natural structure, and enhancing the biological properties of damaged tissue is one of the major challenges in biomedical engineering and regeneration medicine. Although polymeric based membranes have revealed noticeable advancements in bone regeneration, their mechanical stiffens, electrical conductivity and bioactivity need to be tolerated. Methods: Therefore, the present study is designed to generate a multifunctional biomaterial based on polylactic acid (PLA)/ polycaprolactone (PCL)/hydroxyapatite (HA) nanocomposite containing zinc oxide (ZnO) and Graphene (Gr) nanoparticles employing... 

    Improving cell proliferation using polylactic acid, polycaprolactone, hydroxyapatite and zinc oxide nanocomposite for cancellous bone substitutes

    , Article Polymer-Plastics Technology and Materials ; Volume 63, Issue 2 , 2023 , Pages 95-119 ; 25740881 (ISSN) Dehghani Firoozabadi, F ; Ramazani Saadatabadi, A ; Asefnejad, A ; Sharif University of Technology
    Taylor and Francis Ltd  2023
    Abstract
    Different types of implants are used in orthopedic applications. Due to the stress shielding and a second surgery caused by applying metal implants as orthopedic joints, using biodegradable bone implants with antibacterial properties is advantageous. Therefore, this study aims at fabricating a multifunctional poly (lactic acid) (PLA)-polycaprolactone (PCL)-based scaffold reinforced with hydroxyapatite (HA) and zinc oxide (ZnO) nanoparticles. Solvent casting combined with die-casting techniques was employed for fabricating the scaffolds, and their physical, mechanical, and biological properties were characterized. The morphology of the samples and the growth of hydroxyapatite crystals on the... 

    Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083

    , Article Materials Science and Engineering A ; Volume 527, Issue 1-2 , 2009 , Pages 192-197 ; 09215093 (ISSN) Yazdipour, A ; Shafiei M., A ; Dehghani, K ; Sharif University of Technology
    2009
    Abstract
    An analytical model is developed to study the effect of cooling rate on the final grain size of stirred zone of the Al5083 subjected to friction stir processing. The effect of cooling rate on the grain size of the stirred zone was investigated experimentally and numerically. A new microstructural evolution model was also suggested illustrating the mechanisms contributed in refining the microstructure. A new mechanism termed meta-dynamic recovery (MDRV) is introduced here in this regard. The simulation results also show that the rapid cooling rate resulted in superior mechanical properties through refining the microstructure of the stirred zone. However, decreasing the rotational speed and... 

    Effect of thermomechanical processing on forming limit diagrams predicted by neural networks

    , Article Materials and Manufacturing Processes ; Volume 23, Issue 8 , 2008 , Pages 829-833 ; 10426914 (ISSN) Dehghani, K ; Shafiei M, A ; Naeimi, H ; Sharif University of Technology
    2008
    Abstract
    In the present work, an artificial neural network (ANN) model was developed for predicting the effect of thermo-mechanical processing on the forming limit diagram (FLD) of low carbon steels. The model introduced here considers the content of carbon, the hot finishing temperature, the degree of cold work, the work hardening exponent, the initial yield stress and the ASTM grain size as inputs; while, the predicted FLDs are presented as outputs. The results show that the predicted FLDs by the ANN model are very accurate exhibiting the maximum error of 9% over the whole strain region. The model predicted that with increasing the degree of cold rolling before annealing, the drawability is... 

    Effect of entrance position on particle dispersion in the vortex engine

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 7, Issue PARTS A AND B , 2010 , Pages 1103-1110 ; 9780791844441 (ISBN) Dehghani, S. R ; Saidi, M. H ; Mozafari, A. A ; Ghafourian, A ; Sharif University of Technology
    2010
    Abstract
    Particle dispersion in the vortex flow has been one of the most interesting subjects in recent years. Bidirectional vortex flow field is an industrial sample of the rotating flow which is used to obtain advantages of better mixing and combustion. In this work penetration and dispersion quality of the particles which are entering from various positions on the vortex engine walls have been numerically predicted. Head side, end side, and sidewall are considered as the entering positions. The particle has been assumed to be a rigid sphere. Initial velocity, diameter, and density of entering the particles are assumed to be known. If the particle length scale is considered not to be comparable... 

    Analytical solution of chamber effective length in the axial engine

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 7, Issue PARTS A AND B , 2010 , Pages 1095-1102 ; 9780791844441 (ISBN) Dehghani, S. R ; Mozafari, A. A ; Saidi, M. H ; Ghafourian, A ; Sharif University of Technology
    2010
    Abstract
    this research chamber effective length, which is the minimum chamber length required for complete combustion, for a dilute monopropellant spray, constant area, one dimensional and fixed volume engine is analytically predicted. A new evaporation rate in the form of dk +1 relation, instead of d 2 law, is introduced. In case of controlling the vaporization by radiative heat transfer, k is equal to zero, and when molecular processes control the vaporization, k will be equal to unity and in some cases the vaporization data need the value of k greater than one to fit properly to related equation. Development of this approach can be used in design of combustion chambers with optimum length and with... 

    Effect of entrance position on particle dispersion in bidirectional vortex flow

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART C , 2009 , Pages 1957-1964 ; 9780791843727 (ISBN) Dehghani, S. R ; Saidi, M. H ; Mozafari, A. A ; Ghafourian, A ; Sharif University of Technology
    2009
    Abstract
    Particle dispersion in the vortex flow has been one of the most interesting subjects in recent years. Bidirectional vortex flow field is an industrial sample of rotating flow which is used to obtain advantages of better mixing and combustion. In this work penetration and dispersion quality of particles which are entering from various positions on the vortex engine walls have been numerically predicted. Head side, end side, and sidewall are considered as the entering positions. The particle has been assumed to be a rigid sphere. Initial velocity, diameter, and density of entering particles are assumed to be known. If the particle length scale is considered not to be comparable with the... 

    Analytical solution of chamber effective length in the axial engine

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART B , 2009 , Pages 881-888 ; 9780791843727 (ISBN) Dehghani, S. R ; Mozafari, A. A ; Saidi, M. H ; Ghafourian, A ; Sharif University of Technology
    2009
    Abstract
    In this research, effective length of one-dimensional combustion in a dilute monopropellant spray, constant area and fixed volume chamber is analytically predicted. A new evaporation rate in the form of d k+1 relation is introduced. In the case of controlling vaporization by radiative heat transfer, k is equal to zero, and when molecular processes control the vaporization, k will be equal to one and in some cases vaporization data need the value of k greater than one to fit properly to related equation. Development of this approach can be used in the design of combustion chambers with optimum length and with using vaporization rate of R = R0〈r〉 0 k/〈r〉k. Spray equation and distribution... 

    Particle trajectory in a bidirectional vortex flow

    , Article Particulate Science and Technology ; Volume 27, Issue 1 , 2009 , Pages 16-34 ; 02726351 (ISSN) Dehghani, S. R ; Saidi, M. H ; Mozafari, A. A ; Ghafourian, A ; Sharif University of Technology
    2009
    Abstract
    In this research particle trajectory in a bidirectional vortex flow has been numerically predicted and the results experimentally validated. Scale analyses of forces show their order of magnitudes and give a criterion to recognize the order of magnitude of exerting forces on the particle. The particle has been assumed to be a rigid sphere. Initial velocity, diameter, density, and position of entering particle are assumed to be known. If the particle length scale is considered not to be comparable with the chamber length and if particle number density is low, then influence of particle on the flow field is negligible and a one-way solution is applicable. The governing equation is converted to... 

    Producing ultrafine-grained aluminum rods by cyclic forward-backward extrusion: Study the microstructures and mechanical properties

    , Article Materials Letters ; Volume 74 , May , 2012 , Pages 147-150 ; 0167577X (ISSN) Alihosseini, H ; Zaeem, M. A ; Dehghani, K ; Shivaee, H. A ; Sharif University of Technology
    2012
    Abstract
    A cyclic forward-backward extrusion (CFBE) process was used as a severe plastic deformation (SPD) technique to produce ultrafine-grained aluminum rods. Yield strength and tensile strength of the specimens increased by increasing the number of CFBE cycles, while elongation to break decreased due to an increase in the grain refinement and microhardness. According to transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) results, the average grain size was reduced from 120 μm to 315 nm after only 3 cycles of CFBE  

    A reduced complexity 3 rd order digital delta-sigma modulator for fractional-N frequency synthesis

    , Article Proceedings - 17th International Conference on VLSI Design, Concurrently with the 3rd International Conference on Embedded Systems Design, Mumbai, 5 January 2004 through 9 January 2004 ; Volume 17 , 2004 , Pages 615-618 ; 10639667 (ISSN) Dehghani, R ; Atarodi, S. M ; Bornoosh, B ; Kusha, A. A ; Sharif University of Technology
    2004
    Abstract
    A reduced complexity third-order digital delta-sigma modulator is presented. The modulator consists of two cascaded sections to produce proper shaping of quantization noise with minimum hardware. A new architecture for a digital third-order delta-sigma modulator based on Ritchie structure is proposed. The measurement results show 94dB SNR and 65% dynamic range  

    Totally solution-processed CuInS2 solar cells based on chloride inks: Reduced metastable phases and improved current density

    , Article Journal of Physics D: Applied Physics ; Volume 48, Issue 11 , March , 2015 , pp. 115304-115311 ; 00223727 (ISSN) Dehghani, M ; Behjat, A ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Planar superstrate CuInS2 (CIS) solar cell devices are fabricated using totally solution-processed deposition methods. These Cd-free devices are structured by FTO/TiO2/In2S3/CIS/carbon, where TiO2 and In2S3 are deposited by spray pyrolysis, and a CIS film is deposited using spin-coating followed by annealing at 250 °C. The pasted carbon layer is utilized as the anode. No further sulfurization or selenization is employed. The Cu/In ratio in the ink is found as a critical factor affecting the morphology and crystallinity of the film as well as the photovoltaic performance of the device. An optimum Cu/In = 1.05 results in large-grain films with sharp diffraction peaks and, subsequently, optimal... 

    Analytical solution of an induced fiber grating relative humidity sensor

    , Article Iranian Journal of Science and Technology, Transaction A: Science ; Volume 44, Issue 2 , 2020 , Pages 519-526 Dehghani Sanij, M ; Rooholamininejad, H ; Bahrampour, A. R ; Sharif University of Technology
    Springer  2020
    Abstract
    In our previous work, a distributed moisture sensor based on the induced long-period fiber grating in the presence of moisture is proposed. The proposed structure is analyzed numerically (Opt Laser Technol 117:126–133, 2019). In this article, due to the axial symmetry and periodic structure of the proposed sensor, the Love’s potential and Fourier series are employed to obtain an analytical solution for the refractive index variation along the sensor versus moisture density. The analytical method reduces the computation time relative to our numerical calculation drastically. The analytical results are in good agreement with those that are obtained by numerical calculations. The analytical... 

    Experimental investigation of new designs of wind towers

    , Article Renewable Energy ; Volume 33, Issue 10 , 2008 , Pages 2273-2281 ; 09601481 (ISSN) Bahadori Nejad , M ; Mazidi, M ; Dehghani, A. R ; Sharif University of Technology
    2008
    Abstract
    Two new designs of wind towers were tested side by side with a conventional wind tower in the city of Yazd, Iran. All the towers were of identical dimensions. The two new designs were one with wetted column, consisting of wetted curtains hung in the tower column, and the other one with wetted surfaces, consisting of wetted evaporative cooling pads mounted at its entrance. The air temperature leaving the wind towers with evaporative cooling provisions were much lower than the air temperature leaving the conventional design, and its relative humidity much higher. The air-flow rate was reduced slightly in these new towers. It was found that the wind tower with wetted column performs better with... 

    Particle dispersion dependency on the entrance position in bidirectional flow

    , Article Particulate Science and Technology ; Volume 31, Issue 6 , 2013 , Pages 576-584 ; 02726351 (ISSN) Dehghani, S. R ; Saidi, M. H ; Mozafari, A. A ; Soleimani, F ; Sharif University of Technology
    2013
    Abstract
    This article presents a process of numerically predicting and experimentally verifying the dispersion quality and penetration level of fuel particles entering and moving in various directions relative to vortex engine walls. If the length scale of particles considered in this study is not comparable to the chamber length and, furthermore, the density is ignored, the effect of the particle on the flow field can be neglected and a one-way solution will be viable for the problem. The solutions in each case are carried out to estimate the particle trajectory and parameters affecting it. The governing equations are converted to a set of nonlinear, coupled, ordinary differential equations (ODEs)... 

    A proposal for distributed humidity sensor based on the induced LPFG in a periodic polymer coated fiber structure

    , Article Optics and Laser Technology ; Volume 117 , 2019 , Pages 126-133 ; 00303992 (ISSN) Dehghani Sanij, M ; Esmailzadeh Noghani, F ; Bahrampour, A ; Bahrampour, A. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this paper, a distributed relative humidity (RH) or moisture sensor is proposed. The proposed structure is a single mode telecommunication optical fiber coated by humidity sensitive and insensitive polymers periodically. The polymer coated fiber is surrounded by a high Young's modulus material such as stainless steel mesh. The swelling of the coated Humidity Sensitive Polymers (HSPs) as a result of moisture absorption induces fiber gratings in the single mode fiber. Depending on the coating period relative to the light wavelength, the induced fiber grating can be Fiber Bragg Grating (FBG) or Long Period Fiber Grating (LPFG). The light reflected by the induced FBG or losses due to the...