Loading...
Search for: dehkordi--a--m
0.154 seconds

    Mixed-convection flow of nanofluids and regular fluids in vertical porous media with viscous heating

    , Article Industrial and Engineering Chemistry Research ; Volume 50, Issue 15 , 2011 , Pages 9403-9414 ; 08885885 (ISSN) Memari, M ; Golmakani, A ; Dehkordi, A. M ; Sharif University of Technology
    2011
    Abstract
    In this article, the problem of combined forced and natural convection in a vertical porous channel for both regular fluids and nanofluids has been solved by perturbation and numerical methods, taking into account the influences of viscous heating and inertial force. In this regard, various types of viscous dissipation models, including the Darcy model, the power of drag force model, and the clear fluid compatible model, were considered to account for viscous heating. In addition, the mass flux of nanoparticles was also considered in terms of Brownian and thermophoresis mechanisms. The velocity and temperature distributions of both the regular fluid and nanofluid and the Nusselt number... 

    Discrete bubble model for prediction of bubble behavior in 3D fluidized beds

    , Article Chemical Engineering and Technology ; Volume 35, Issue 5 , 2012 , Pages 929-936 ; 09307516 (ISSN) Movahedirad, S ; Ghafari, M ; Dehkordi, A. M ; Sharif University of Technology
    2012
    Abstract
    A discrete bubble model has been developed taking into account multiple bubble-bubble interactions and a delayed coalescence method. The obtained simulation results were compared with experimental data reported in literature. The simulation results predicted by the developed model indicate clearly that the multiple interactions of bubbles lead to more reasonable results than those predicted by a binary interaction model. In addition, two types of interaction models were applied and predicted results were compared. The frequency of gas bubbles passing through the bed cross section versus bed height follows the same trend as the experimental data. A new modified discrete bubble model has been... 

    Oxidative desulfurization of Non-hydrotreated kerosene using hydrogen peroxide and acetic acid

    , Article Chinese Journal of Chemical Engineering ; Volume 17, Issue 5 , 2009 , Pages 869-874 ; 10049541 (ISSN) Molaei Dehkordi, A ; Sobati, M. A ; Nazem, M. A ; Sharif University of Technology
    2009
    Abstract
    The oxidative desulfurization of a real refinery feedstock (i.e., non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied. The influences of various operating parameters including reaction temperature (T), acid to sulfur molar ratio (nacid/nS), and oxidant to sulfur molar ratio (nO/nS) on the sulfur removal of kerosene were investigated. The results revealed that an increase in the reaction temperature (T) and nacid/nS enhances the sulfur removal. Moreover, there is an optimum nO/nS related to the reaction temperature and the best sulfur removal could be obtained at nO/nS8 and 23 for the reaction temperatures of 25... 

    Novel type of four-impinging-jets reactor for Oxidative desulfurization of light fuel oils

    , Article Industrial and Engineering Chemistry Research ; Volume 49, Issue 19 , 2010 , Pages 9339-9348 ; 08885885 (ISSN) Sobati, M. A ; Molaei Dehkordi, A ; Shahrokhi, M ; Ebrahimi, A. A ; Sharif University of Technology
    2010
    Abstract
    A novel type of four-impinging-jets reactor (FIJR) has been proposed and tested successfully for the oxidative desulfurization of kerosene as a typical light fuel oil. The FIJR is characterized by a high-intensity mixing chamber located at the bottom of the reactor and equipped with four impinging jets. The influences of various operating and design parameters such as feed flow rate, internozzle distance, jet diameter, and jet Reynolds number on the performance of the FIJR have been carefully investigated. As a result of both the impinging process and shear forces exerted on the phases, the rate of desulfurization in FIJR increased significantly compared to that obtained by a conventional... 

    Liquid-liquid extraction of oxidized sulfur-containing compounds of non-hydrotreated kerosene

    , Article Fuel Processing Technology ; Volume 91, Issue 11 , November , 2010 , Pages 1386-1394 ; 03783820 (ISSN) Sobati, M. A ; Molaei Dehkordi, A ; Shahrokhi, M ; Sharif University of Technology
    2010
    Abstract
    An experimental study was conducted on the desulfurization of non-hydrotreated kerosene with oxidation followed by liquid-liquid extraction. Various types of solvents including acetonitrile, methanol, and ethanol have been examined in the extraction of oxidized sulfur-containing compounds of kerosene. The performance of these solvents has been carefully examined and compared. It was found that their performance follows the order: acetonitrile > methanol > ethanol. The effects of number of extraction stages and solvent to kerosene ratio on the desulfurization and recovery of kerosene have been investigated. The experimental results show that for all three solvents, solvent/kerosene ratio and... 

    Population balance modeling of barium sulfate nanoparticle synthesis via inverse microemulsion including coagulation effect

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 32 , 2014 , Pages 12705-12719 ; ISSN: 08885885 Vafa, E ; Shahrokhi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    2014
    Abstract
    A deterministic model based on the discrete population balance equation (PBE) is used to examine the precipitation of barium sulfate nanoparticles in nonionic inverse microemulsion systems. It is shown that coagulation can have a significant effect at low initial reactants concentration. The simulation results show that a bimodal particle size distribution (PSD) observed in experimental analysis reported in the literature cannot be predicted by neglecting the coagulation effect. A coagulation kernel is proposed that takes into account the effect of interparticle forces through the Fuchs' stability ratio. The effect of electrolyte concentration on the surfactant headgroup area is also... 

    A novel model for predicting the dense phase behavior of 3D gas-solid fluidized beds

    , Article Chemical Engineering and Technology ; Volume 37, Issue 1 , January , 2014 , Pages 103-112 ; ISSN: 09307516 Movahedirad, S ; Ghafari, M ; Molaei Dehkordi, A ; Sharif University of Technology
    2014
    Abstract
    A novel phenomenological discrete bubble model was developed and tested for prediction of the hydrodynamic behavior of the dense phase of a 3D gas-solid cylindrical fluidized bed. The mirror image technique was applied to take into account the effects of the bed wall. The simulation results were validated against experimental data reported in the literature that were obtained by positron emission particle tracking. The time-averaged velocity profiles of particles predicted by the developed model were found to agree well with experimental data. The initial bubble diameter had no significant influence on the time-averaged circulating pattern of solids in the bed. The model predictions clearly... 

    Steam reforming of methane in a tapered membrane - Assisted fluidized - Bed reactor: Modeling and simulation

    , Article International Journal of Hydrogen Energy ; Volume 36, Issue 1 , 2011 , Pages 490-504 ; 03603199 (ISSN) Dehkordi, A. M ; Savari, C ; Ghasemi, M ; Sharif University of Technology
    2011
    Abstract
    A compartment model was developed to describe the flow pattern of gas within the dense zone of a tapered membrane-assisted fluidized-bed reactor (TMAFBR), in the bubbling mode of operation for steam reforming of methane under wall heat flux. The parameters of the developed model (i.e., number of compartments for the bubble and emulsion phases) were determined using the experimental data reported elsewhere [Adris AM, Lim CJ, Grace JR. The fluidized bed membrane reactor system: a pilot scale experimental study. Chem Eng Sci 1994; 49:5833-43.] and good agreements were obtained between model predictions and corresponding experimental data. The developed model was then utilized to predict the... 

    Gas absorption enhancement in hollow fiber membrane contactors using nanofluids: Modeling and simulation

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 119 , 2017 , Pages 7-15 ; 02552701 (ISSN) Darabi, M ; Rahimi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this article, a comprehensive 2D mathematical model has been developed to simulate process intensification of carbon dioxide absorption in the presence of nanoparticles in hollow fiber membrane contactors (HFMCs). The influences of nanoparticle were taken into account considering Brownian motion and Grazing effect as dominant phenomena of mass-transfer enhancement in nanofluids. The obtained simulation results were validated against experimental data reported in the literature and excellent agreement was obtained. It was found that by adding 0.05 wt % silica nanoparticles, the absorption rate could be enhanced by 16%, while the corresponding value is 32% for CNT nanoparticles. High... 

    Numerical simulation of a cubic spout-fluid bed: influences of inlet gas temperature and jet to bed cross-section ratio

    , Article International Journal of Chemical Reactor Engineering ; Volume 18, Issue 3 , 2020 Rahmani, A ; Tamtaji, M ; Molaei Dehkordi, A ; Sharif University of Technology
    De Gruyter  2020
    Abstract
    In this paper, we study the role of inlet gas temperature and jet to bed cross-section ratio on hydrodynamics and circulation patterns of particles in a spout-fluid bed. The system is modeled using CFD-TFM approach based on Eulerian-Eulerian method. Simulation results are validated by experimental data measured by (Link 2008. "PEPT and Discrete Particle Simulation Study of Spout-fluid Bed Regimes." Aiche Journal 54 (5): 1189-202). First, the sensitivity analysis of simulation results versus the most significant parameters are conducted to find the optimum values for each parameter. Subsequently, the role of inlet gas temperature and cross-section ratios are studied in detail. The simulation... 

    Enhancement effect of structured packing on the liquid-liquid mass transfer coefficients

    , Article 18th International Congress of Chemical and Process Engineering, CHISA 2008, Prague, 24 August 2008 through 28 August 2008 ; 2008 Bastani, D ; Ghasemian, S ; Dehkordi, A. M ; Sharif University of Technology
    2008
    Abstract
    The mass transfer coefficients of single drops in liquid-liquid extraction systems were studied using a single drop apparatus both with and without packing. The chemical system of n-butanol-succinic acid-water and the Structured Packing (SMV.350Y) were used in the liquid-liquid extraction. Based on the experimental results obtained for both mass transfer directions, in most cases, the structured packing had considerably enhanced the mass transfer coefficient by increasing the contact area between two phases and also increasing the contact time, especially in the contaminated systems. This is an abstract of a paper presented at the 18th International Congress of Chemical and Process... 

    Investigation on various types of ion-exchange membranes in vanadium redox flow batteries: Experiment and modeling

    , Article Journal of Energy Storage ; Volume 54 , 2022 ; 2352152X (ISSN) Maghsoudy, S ; Rahimi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Choosing the appropriate ion exchange membrane in vanadium redox flow batteries plays an important role in achieving optimal system performance. In this article, the implementation of commercial cation exchange membranes (Nafion 115, Nafion 117, and Nafion 212), anion exchange membranes (FAP 450 and QA-PFE), and the combination of them are investigated. In this regard, the effects of membrane type, thickness, electrical conductivity, and the transfer of vanadium species at different current densities are examined carefully. In addition, the influences of the flow rate and the concentration of electrolytes are investigated using a comprehensive developed model. The model predictions are... 

    A decision tree-based method for power system fault diagnosis by synchronized Phasor Measurements

    , Article IEEE PES Innovative Smart Grid Technologies Conference Europe ; 2012 ; 9781467325974 (ISBN) Dehkordi, P. Z ; Dobakhshari, A. S ; Ranjbar, A. M ; Sharif University of Technology
    2012
    Abstract
    This paper introduces a novel approach for power system fault diagnosis based on synchronized phasor measurements during the fault. The synchronized measurements are obtained in real time from Phasor Measurement Units (PMUs) and compared with offline thresholds determined by decision trees (DTs) to diagnose the fault. The DTs have already been trained offline using detailed power system analysis for different fault cases. While the traditional methods for fault diagnosis use the status of protective relays (PRs) and circuit breakers (CBs) to infer the fault section in the power system, the proposed method uses the available signals following the fault and thus can be trusted even in case of... 

    Retarding effect of contaminants on the performance of a two-impinging-jets liquid-liquid extraction contactor

    , Article Chemical Engineering and Technology ; Volume 33, Issue 6 , June , 2010 , Pages 1003-1010 ; 09307516 (ISSN) Saien, J ; Doghahe, S. A. O ; Dehkordi, A. M ; Sharif University of Technology
    2010
    Abstract
    In industrial liquid-liquid extraction processes, the feed is not clean liquid but there are various kinds of contaminants in the feed entering the extractors. In this regard, a two-impinging-jets contacting device (TIJCD) was tested through the standard test system recommended by the European Federation of Chemical Engineering (EFCE), namely toluene-acetone-water, in the presence and absence of various types of surface-active agents (SAAs). The influences of anionic, cationic, and nonionic SAAs such as sodium dodecyl sulfate (SDS), dodecyl trimethyl ammonium chloride (DTMAC), and octylphenol decaethylene glycol ether (Triton X-100), respectively, on the extraction efficiency and overall... 

    Investigation of a two impinging-jets contacting device for liquid-liquid extraction processes

    , Article Chemical Engineering Journal ; Volume 118, Issue 3 , 2006 , Pages 3942-3950 ; 13858947 (ISSN) Saien, J ; Ebrahimzadeh Zonouzian, S. A ; Dehkordi, A. M ; Sharif University of Technology
    Elsevier  2006

    Distributed transactive framework for congestion management of multiple-microgrid distribution systems

    , Article IEEE Transactions on Smart Grid ; 2021 ; 19493053 (ISSN) Fattaheian Dehkordi, S ; Rajaei, A ; Abbaspour, A ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    The privatization of distribution systems has resulted in the development of multiple-microgrid (multiple-MG) systems where each microgrid independently operates its local resources. Moreover, the high integration of independent distributed energy sources could lead to operational issues such as grid congestion in future distribution systems. Therefore, this paper provides a transactive-based energy management framework to operate multiple-MG distribution systems; while, alleviating grid congestion in a decentralized manner. In this respect, alternating direction method of multipliers (ADMM) is considered to develop an operational framework that copes with distributed nature of multiple-MG... 

    Distributed transactive framework for congestion management of multiple-microgrid distribution systems

    , Article IEEE Transactions on Smart Grid ; Volume 13, Issue 2 , 2022 , Pages 1335-1346 ; 19493053 (ISSN) Fattaheian Dehkordi, S ; Rajaei, A ; Abbaspour, A ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The privatization of distribution systems has resulted in the development of multiple-microgrid (multiple-MG) systems where each microgrid independently operates its local resources. Moreover, the high integration of independent distributed energy sources could lead to operational issues such as grid congestion in future distribution systems. Therefore, this paper provides a transactive-based energy management framework to operate multiple-MG distribution systems; while, alleviating grid congestion in a decentralized manner. In this respect, alternating direction method of multipliers (ADMM) is considered to develop an operational framework that copes with distributed nature of multiple-MG... 

    Selective fabrication of robust and multifunctional super nonwetting surfaces by diverse modifications of zirconia-ceria nanocomposites

    , Article Langmuir ; Volume 38, Issue 30 , 2022 , Pages 9195-9209 ; 07437463 (ISSN) Esmaeilzadeh, P ; Zandi, A ; Ghazanfari, M. H ; Khezrnejad, A ; Fatemi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The creation of surfaces with various super nonwetting properties is an ongoing challenge. We report diverse modifications of novel synthesized zirconia-ceria nanocomposites by different low surface energy agents to fabricate nanofluids capable of regulating surface wettability of mineral substrates to achieve selective superhydrophobic, superoleophobic-superhydrophilic, and superamphiphobic conditions. Surfaces treated with these nanofluids offer self-cleaning properties and effortless rolling-off behavior with sliding angles ≤7° for several liquids with surface tensions between 26 and 72.1 mN/m. The superamphiphobic nanofluid coating imparts nonstick properties to a solid surface whereby... 

    Comprehensive modeling and CFD simulation of absorption of CO2 and H2S by MEA solution in hollow fiber membrane reactors

    , Article AIChE Journal ; Vol. 60, issue. 2 , 2014 , pp. 657-672 ; ISSN: 00011541 Amrei, S. M. H. H ; Memardoost, S ; Dehkordi, A. M ; Sharif University of Technology
    2014
    Abstract
    A comprehensive mathematical model has been developed for the simulation of simultaneous chemical absorption of carbon dioxide and hydrogen sulfide by means of Monoethanolamine (MEA) aqueous solution in hollow fiber membrane reactors is described. In this regard, a perfect model considering the entrance regions of momentum, energy, and mass transfers was developed. Computational Fluid Dynamics (CFD) techniques were applied to solve governing equations, and the model predictions were validated against experimental data reported in the literature and excellent agreement was found. Effects of different disturbances on the dynamic behavior of the reactor were investigated. Moreover, effects of... 

    Statistical analysis on the effect of reduced frequency on the aerodynamic behavior of an airfoil in dynamic physical motions

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 535 , 2019 ; 03784371 (ISSN) Razavi Dehkordi, M. H ; Soltani, M. R ; Davari, A. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this paper, an extensive experimental tests were performed to determine the aerodynamic characteristics of an airfoil undergoing static, dynamic pitch, dynamic plunge and dynamic combined pitch and plunge motions for various cases. This paper, however, focuses on the effects of reduced frequencies and mean angles of attack on the surface pressure distribution and on the corresponding lift of the airfoil oscillating in either pure pitch or in combined pitch–plunge motions. The angles of attack variations were set such that the model motion would be ceased lower than the static stall, near the static stall and beyond the static stall angles of attack. All tests were conducted at a constant...