Loading...
Search for:
ebrahimi--behzad
0.149 seconds
Total 676 records
A continuous vibration theory for rotors with an open edge crack
, Article Journal of Sound and Vibration ; Volume 333, Issue 15 , 21 July 2014 , Pages 3522–3535 ; Heydari, M ; Behzad, M ; Sharif University of Technology
21 July 2014
Abstract
In this paper a new continuous model for flexural vibration of rotors with an open edge crack has been developed. The cracked rotor is considered in the rotating coordinate system attached to it. Therefore, the rotor bending can be decomposed in two perpendicular directions. Two quasi-linear displacement fields are assumed for these two directions and the strain and stress fields are calculated in each direction. Then the final displacement and stress fields are obtained by composing the displacement and stress fields in the two directions. The governing equation of motion for the rotor has been obtained using the Hamilton principle and solved using a modified Galerkin method. The free...
Forced vibration analysis of rotors with an open edge crack based on a continuous vibration theory
, Article Archive of Applied Mechanics ; Volume 87, Issue 11 , 2017 , Pages 1871-1889 ; 09391533 (ISSN) ; Heydari, M ; Behzad, M ; Sharif University of Technology
2017
Abstract
In this paper, the forced vibration of a cracked rotor with an open edge crack has been studied by a new continuous model for flexural vibration of cracked rotors proposed in Ebrahimi et al. (J Sound Vib 333:3522–3535, 2014). The cracked rotor behavior under the external excitation of gravity and unbalance forces is presented. Since the governing equation is linear, using the superposition principle the responses of the cracked rotor to the gravity and unbalance forces are calculated separately. Then, the total response is calculated by summing these two responses. Each of these two responses is found by using a modified Galerkin method. The effect of the crack in the presence of the gravity...
Optimal vibration control of rotors with an open edge crack using an electromagnetic actuator
, Article JVC/Journal of Vibration and Control ; Volume 24, Issue 1 , 2018 , Pages 37-59 ; 10775463 (ISSN) ; Heydari, M ; Behzad, M ; Sharif University of Technology
SAGE Publications Inc
2018
Abstract
Vibration control, especially in cracked rotors, is an important factor that can prevent the occurrence of disastrous failures. In this paper, vibrational control of a cracked rotor with an electromagnetic actuator has been studied with a continuous model of flexural vibration of cracked rotors. The governing equation of motion for the rotor under the external excitation of the electromagnetic actuator, gravity, and unbalanced forces is presented. A control law for the optimal control method to minimize the vibration of the rotor or stress at the crack section was obtained. To this aim, two cost functions have been introduced, based on the overall vibration of the rotor and the maximum...
A linear theory for bending stress-strain analysis of a beam with an edge crack
, Article Engineering Fracture Mechanics ; Volume 75, Issue 16 , 2008 , Pages 4695-4705 ; 00137944 (ISSN) ; Meghdari, A ; Ebrahimi, A ; Sharif University of Technology
2008
Abstract
In this paper, a new linear theory for bending stress-strain analysis of a cracked beam has been developed. A displacement field has been suggested for the beam strain and stress calculations. The bending differential equation for the beam has been written using equilibrium equations. The required constant for this model is also obtained from fracture mechanics. The bending equation has been solved for a simply supported beam with rectangular cross-section and the results are compared with finite element and empirical results. There is an excellent agreement between theoretical results and those obtained by numerical and empirical methods. The model developed in this research is a simple and...
A continuous model for forced vibration analysis of a cracked beam
, Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 74 DSC, Issue 2 PART B , 2005 , Pages 1849-1855 ; 0791842169 (ISBN); 9780791842164 (ISBN) ; Meghdari, A ; Ebrahimi, A ; Sharif University of Technology
2005
Abstract
In this paper the equation of motion and corresponding boundary conditions has been developed for forced bending vibration analysis of a beam with an open edge crack. A uniform Euler-Bernoulli beam and the Hamilton principle have been used in this research. The natural frequencies and the forced response of this beam have been obtained using the new developed model in conjunction with the Galerkin projection method. The crack has been modeled as a continuous disturbance function in displacement filed which could be obtained from fracture mechanics. The results show that the first natural frequency will reduce when the crack depth ratio increases. Also the rate of this reduction depends on...
A new approach for vibration analysis of a cracked beam
, Article International Journal of Engineering, Transactions B: Applications ; Volume 18, Issue 4 , 2005 , Pages 319-330 ; 1728-144X (ISSN) ; Meghdari, A ; Ebrahimi, A ; Sharif University of Technology
Materials and Energy Research Center
2005
Abstract
In this paper the equations of motion and corresponding boundary conditions for bending vibration of a beam with an open edge crack has been developed by implementing the Hamilton principle. A uniform Euler-Bernoulli beam has been used in this research. The natural frequencies of this beam have been calculated using the new developed model in conjunction with the Galerkin projection method. The crack has been modeled as a continuous disturbance function in displacement field which could be obtained from fracture mechanics. The results show that the natural frequencies of a cracked beam reduce by increasing crack depth. There is an excellent agreement between the theoretically calculated...
Saltwater Up-coning into Pumping Wells in Coastal Aquifers in Fractured
Soil
,
M.Sc. Thesis
Sharif University of Technology
;
Ataie Ashtiani, Behzad
(Supervisor)
Abstract
The goal of this research is to investigate the phenomenon of saltwater up-coning into pumping wells in fractured porous media. For this aim, two series of regular orthogonal fracture networks and different vertical and horizontal fracture apertures are simulated using an axisymmetric (2D vertical cross-section) model with a sharp interface approach. The effect of changing the pumping rate and the hydraulic conductivity has been examined to recognize other effective characteristics of the aquifer and pumping well on the saltwater up-coning. These simulations have been performed in COMSOL Multiphysics. The results indicate that the saltwater extent under the pumping well can be affected...
Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour - High-density polyethylene composites
, Article International Journal of Engineering, Transactions B: Applications ; Volume 17, Issue 1 , 2004 , Pages 95-104 ; 1728-144X (ISSN) ; Tajvidi, M ; Ebrahimi, G ; Falk, R. H ; Sharif University of Technology
National Research Center of Medical Sciences
2004
Abstract
In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents without the compatibilizer. Static mechanical tests including tensile and bending tests were performed. Temperature scans in the range of- 110 to +100°C was also conducted. Results indicated improvements in the mechanical properties due to the compatibilizer addition. Storage modulus values were higher in the case of coupled...
Cracked Rotors Modeling for Vibration Analysis and Control
, Ph.D. Dissertation Sharif University of Technology ; Behzad , Mehdi (Supervisor) ; Meghdari, Ali (Supervisor)
Abstract
The main aim of this thesis is to develop a mathematical model for vibration analysis of cracked rotors. This model should be a simple and precise model for prediction of the cracked rotor vibration behavior and suitable for vibration control. In order to create such model, the pure bending of a cracked beam is analyzed at first. This analysis is performed for two different orientations of the crack with respect to the beam and the bending vector. In this section a continuous bending model with continuous model for crack is developed which can predict the full deformation of the cracked beam in bending and can estimate the stress distribution in the beam with good approximation. Comparison...
A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches
, Article International Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2011 and Electromotion 2011 Joint Conference, Istanbul ; 2013 , Pages 125-128 ; 9781467350037 (ISBN) ; Najmi, V ; Ebrahimi, S ; Oraee, H ; Sharif University of Technology
2013
Abstract
Switched Reluctance Motors (SRMs) are widely used in high-speed and low voltage applications because of their attractive features such as robustness and simplicity. No winding on the rotor of this type of motors allows reaching high speed which is desired for many applications. Drive circuits of SRMs also play an important role in their performance and operation. In this paper, a new bifilar drive circuit for this type of motors has been proposed. This novel configuration has been tested and investigated by PSIM software. Results show that the new bifilar drive circuit highly reduces the voltage stresses on semiconductor switches, and also considerably reduces the switching losses which are...
Energy management of smart home considering residences' satisfaction and PHEV
, Article 2018 International Conference on Smart Energy Systems and Technologies, SEST 2018, 10 September 2018 through 12 September 2018 ; 2018 ; 9781538653265 (ISBN) ; Shokri Gazafroudi, A ; Corchado, J. M ; Ebrahimi, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2018
Abstract
Regarding the increasing number of electrical devices in the smart homes that leads to increase in total electricity consumption and cost, it is essential to use energy management methods to reduce the electricity cost. However, this can cause resident's dissatisfaction. Hence, it is important to define a method in which cost and dissatisfaction be optimized simultaneously. Among different services, an electric vehicle is the one that can be used as an energy storage system, so it can reduce the daily cost despite of increasing the total energy consumption. In this paper, we study the effect of the EV on the cost and dissatisfaction in our proposed method. © 2018 IEEE
Measured impact of different back-off points and cooling methods on pulse-to-pulse stability and sidelobe level of a high-power solid-state amplifier
, Article IET Radar, Sonar and Navigation ; Volume 14, Issue 2 , 2020 , Pages 335-340 ; Khodarahmi, E ; Ebrahimi, E ; Ahmadi, B ; Jalali, M ; Sharif University of Technology
Institution of Engineering and Technology
2020
Abstract
Using solid-state power amplifiers for next generation of weather radars becomes feasible by pulse compression techniques. In this study a 1.5 kW solid-state power amplifier (transmitter) for C-band weather radars is designed and fabricated by GaN high electron mobility transistor (HEMT) technology. An experimental setup based on heterodyne receiver with 16-bit digitiser is developed to investigate the behavior of the power amplifier under different cooling methods and back-off points. Several measurements with shaped LFM pulse show an approximately identical pulse to pulse (P2P) stability for 3 dB compression, P1dB and 2 dB back-off points while the best sidelobe level (SLL) is achieved for...
Probabilistic safety assessment of a UF 6 production process
, Article Advances in Safety, Reliability and Risk Management - Proceedings of the European Safety and Reliability Conference, ESREL 2011 ; 2012 , Pages 1384-1389 ; 9780415683791 (ISBN) ; Sharif University of Technology
2012
Abstract
Application of Probabilistic Safety Assessment (PSA) to a Uranium hexafluoride (UF 6) production process is presented in this paper. The process is constituted from three main units: UF 4 conversion to UF 6, condensation of produced UF 6 gas and tail gas treatment. Radioactive gas is present in all parts of the process and occurrence of high pressure or high temperature in the process equipments may lead to radioactive release to workplace and environment. The work is mainly based on PSA experience in nuclear power plants. Accordingly for the process, eight group of Initiating Events (IE) that lead to UF 6 gas release have been identified using HAZOP study. For each IE, based on related...
On the temperature control in self-controlling hyperthermia therapy
, Article Journal of Magnetism and Magnetic Materials ; Volume 416 , 2016 , Pages 134-140 ; 03048853 (ISSN) ; Sharif University of Technology
Elsevier
2016
Abstract
In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature...
Atmospheric icing effects of S816 airfoil on a 600 kW wind turbine's performance
, Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2693-2705 ; 10263098 (ISSN) ; Sharif University of Technology
Sharif University of Technology
2018
Abstract
This study investigates the aerodynamic loads and energy losses of a typical 600 kW wind turbine with S816 airfoil blade under two different icing conditions. Three sections at different radial positions were considered to estimate the icing effect along the blade. Ice accretion simulations in wet and dry regimes were carried out using the NASA LEWICE 3.2 computer program. The airflow simulations were performed with CFD method and SST k -ω turbulence model. The results of these simulations, including streamlines, surface pressure, skin friction, lift, and drag coefficients, were inspected for both clean and iced airfoils. In the case of wet iced airfoil, a separation bubble was created in...
Investigation on the Effects of the Polyacrylamide Copolymers and Their Blends with Sulfonated Lignin on the Soil Stabilization
, M.Sc. Thesis Sharif University of Technology ; Ramazani Saadatabadi, Ahmad (Supervisor) ; Ebrahimi, Hossein (Co-Supervisor)
Abstract
In recent years, dust pollution has become a worldwide issue due to the creation of serious environmental problems and the effects it has on human health. In this research, an environmentally friendly soil stabilizer has been synthesized, and its performance has been investigated. Acrylamide monomers were grafted onto sodium lignosulfonate chains, utilizing solution polymerization. The soil of the Ahvaz deserts was used in the analyses. Using EDX and DLS analyses, the components of this soil and the particle size distribution of the used soil were obtained. Characterization of the functional groups and the structure of the graft copolymer were done by FTIR and H-NMR analysis, respectively,...
A new method for detection of rolling bearing faults based on the Local Curve Roughness approach
, Article Polish Maritime Research ; Volume 18, Issue 2 , July , 2011 , Pages 44-50 ; 12332585 (ISSN) ; Bastami, A ; Sharif University of Technology
2011
Abstract
Detection of rolling bearing faults by vibration analysis is an important part of condition monitoring programs. In this paper a new method for detection of bearing defects based on a new concept of local surface roughness, is proposed. When a defect in the bearing grows then roughness of the defective surface increases and measurement of the roughness can be a good indicator of the bearing defect. In this paper a method of indirectly measuring surface roughness by using vibration signal is introduced. Several attached examples including both numerically simulated signals and actual experimental data show the effectiveness of the new, easy-to-implement method
Numerical and experimental investigation of the vibration of rotors with loose discs
, Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 1 , 2010 , Pages 85-94 ; 09544062 (ISSN) ; Asayesh, M ; Sharif University of Technology
2010
Abstract
In this study, the energy method has been used to develop a finite-element code for studying the effects of loose rotating discs on the rotor-bearing systems' response. A mathematical model of the loose disc has resulted in terms similar to unbalance and gyroscopic effects in the equation of motion of the system. Results of this study show that rotor response and beating phenomena are a function of measurement location, loose disc mass and inertia, ratio of rotating speed to the speed of loose disc, and clearance between the loose disc and shaft considering constant speed for loose disc and shaft. The developed finite-element model can numerically give the response of rotors with any number...
Friction-induced backward rub of rotors in non-annular clearances: Experimental observations and numerical analysis
, Article Tribology International ; Volume 152 , 2020 ; Alvandi, M ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
During backward rub in a turbomachine, rotor is compelled by frictional forces into a severe precessional sliding motion inside stationary parts such as seals or journal bearings in opposite direction of rotor's rotation. Backward rub occurs with high frequency and high amplitude of vibration and can deteriorates rubbing surfaces just for few moments. This paper presents and investigates the idea of clearance profile alteration from annular form to non-annular 3-lobed form in order to affect the reverse rub's characteristics. For this purpose, a test setup consisting of a lightly damped rotor-stator system is designed and built in SUT's condition-monitoring laboratory for testing the...
Unbalance-induced rub between rotor and compliant-segmented stator
, Article Journal of Sound and Vibration ; Volume 429 , 2018 , Pages 96-129 ; 0022460X (ISSN) ; Alvandi, M ; Sharif University of Technology
Academic Press
2018
Abstract
Today, turbomachinery designers are trying to attain zero clearances for optimizing performance and efficiency of machine by designing advanced compliant-segmented seals. This trend involves secondary issues such as rotor-to-stator contact interaction which is to be treated with more technical knowledge in rotordynamic design and condition monitoring programs. The aim of this paper is to gain insight into dynamic interaction between a flexible rotor and a set of compliant arc-shaped segments as stator system. Specifically, the unbalanced-induced forward rubbing response is investigated in tight clearance condition during resonance-passing situations. A Jeffcott rotor modeling is used for...