Loading...
Search for:
ebrahimi--zeinab
0.115 seconds
Total 441 records
Optical Injection Phase-Locked Loop Application in Continuous-variable Quantum Key Distributions
, Ph.D. Dissertation Sharif University of Technology ; Bahrampour, Alireza (Supervisor)
Abstract
The primary objective of this thesis is to provide solutions addressing some security loopholes in continuous variables quantum key distribution protocols. The coherent detection method is utilized in this particular quantum key distribution scheme, which is a phase-sensitive detection. To measure in the quantum noise limit in the detection part, we need a local optical oscillator, which must possess a high intensity and a consistent phase correlation with the quantum signal. Therefore, reconstructing the emitter’s reference phase in the receiver’s detection system is considered as one of the most critical challenges in these protocols. In order to attain this goal, in the early versions of...
Using Information Beyond Text to Generate Language Embedding Vectors
, M.Sc. Thesis Sharif University of Technology ; Sameti, Hossein (Supervisor)
Abstract
In this thesis, we introduce a novel Artificial Intelligence (AI) system inspired by the philosophical and psychoanalytical concept of imagination as a ``Re-construction of Experiences". Our AI system is equipped with an imagination-inspired module that bridges the gap between textual inputs and other modalities, enriching the derived information based on previously learned experiences. A unique feature of our system is its ability to formulate independent perceptions of inputs. This leads to unique interpretations of a concept that may differ from human interpretations but are equally valid, a phenomenon we term as ``Interpretable Misunderstanding". We employ large-scale models,...
Design and Fabrication of Microfluidic System as Concentration Gradient Generator
, M.Sc. Thesis Sharif University of Technology ; Saadatmand, Maryam (Supervisor)
Abstract
According to today’s medicine progress, the need for improving the medical facilities have been increased. Within the human body, the biomolecules concentration gradient is regulating the cell functions. Biological processes such as immune response, wound healing, and cancer metastasis have been affected by the bimolecular concentration gradient. So understanding the cell behavior in the presence of a chemical gradient can improve the understanding from these biological processes, and also would help in medical researches. On the other hand, finding the appropriate dose of the drugs and in some cases finding the most effective drug is a clinical challenge that made a new field of research in...
Investigation of the Performance of Microbial Fuel Cell Based on Shewanella Bacteria with the Aim of Nanostructured Materials
, M.Sc. Thesis Sharif University of Technology ; Yaghmaei, Soheila (Supervisor) ; Sanaee, Zeinab (Co-Supervisor)
Abstract
The development of clean, renewable and alternative sources of fossil fuels has increased in recent years due to various factors such as environmental pollution, reduced fossil fuel resources and increased energy consumption. The application of microbial fuel cells is one of the clean energy production methods using renewable sources such as municipal sewage. The microbial fuel cell converts the chemical energy stored in organic materials into electrical energy and simultaneously purifies the sewage. Increasing current density and power density are the most important challenges for microbial fuel cells. In this study, the two biocatalysts of Shewanella Oneidensis MR1 and Escherichia coli...
Synthesis, Evaluation and Modification of Suitable Metal–Organic Frameworks (MOFS) for Desulfurization of Hydrocarbon Cuts
, M.Sc. Thesis Sharif University of Technology ; Khorashe, Farhad (Supervisor) ; Hajjar, Zeinab (Co-Supervisor) ; Soltanali, Saeed (Co-Supervisor)
Abstract
During fuel combustion, aromatic sulfur compounds in energy fuels convert into sulfur oxides, which cause major environmental problems such as acidic rain, global warming, and air pollution. Absorption desulfurization is one of the promising and economical methods to remove these sulfur compounds from fuels. Metal-organic frameworks (MOFs) are a class of nanoporous materials that are of interest for use as adsorbents due to their high specific surface area, unique surface adsorption properties, high adsorption capacity, tunable porosity, flexible dynamic behavior, and diversity in functional and metal groups. In this research, we first synthesized five metal-organic frameworks, namely...
Reduction of Sulfur Content of Model Feed by Oxidative Process in them Presence of Carbon Structures Based W-Mo Nanocatalysts
, Ph.D. Dissertation Sharif University of Technology ; Kazemini, Mohammad (Supervisor) ; Rashidi, Alimorad (Supervisor) ; Hajjar, Zeinab (Co-Supervisor)
Abstract
In this research, molybdenum and tungsten catalysts modified with cobalt and nickel on a carbon support have been synthesized and investigated in the oxidation desulfurization process. A model fuel was used to evaluate the synthesized catalysts. This model fuel was n-decane. dibenzothiophene was also used as a sulfur model. The synthesized catalysts were subjected to various analyzes such as XRD, FTIR, Raman, BET-BJH, NH3-TPD, TEM and ICP-OES for structural evaluation. On the other hand, synthetic parameters such as metal loading rate, molar or weight ratio of secondary metal (cobalt and nickel) to primary metal (molybdenum and tungsten) and molar ratio of citric acid to primary metal as...
A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches
, Article International Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2011 and Electromotion 2011 Joint Conference, Istanbul ; 2013 , Pages 125-128 ; 9781467350037 (ISBN) ; Najmi, V ; Ebrahimi, S ; Oraee, H ; Sharif University of Technology
2013
Abstract
Switched Reluctance Motors (SRMs) are widely used in high-speed and low voltage applications because of their attractive features such as robustness and simplicity. No winding on the rotor of this type of motors allows reaching high speed which is desired for many applications. Drive circuits of SRMs also play an important role in their performance and operation. In this paper, a new bifilar drive circuit for this type of motors has been proposed. This novel configuration has been tested and investigated by PSIM software. Results show that the new bifilar drive circuit highly reduces the voltage stresses on semiconductor switches, and also considerably reduces the switching losses which are...
Energy management of smart home considering residences' satisfaction and PHEV
, Article 2018 International Conference on Smart Energy Systems and Technologies, SEST 2018, 10 September 2018 through 12 September 2018 ; 2018 ; 9781538653265 (ISBN) ; Shokri Gazafroudi, A ; Corchado, J. M ; Ebrahimi, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2018
Abstract
Regarding the increasing number of electrical devices in the smart homes that leads to increase in total electricity consumption and cost, it is essential to use energy management methods to reduce the electricity cost. However, this can cause resident's dissatisfaction. Hence, it is important to define a method in which cost and dissatisfaction be optimized simultaneously. Among different services, an electric vehicle is the one that can be used as an energy storage system, so it can reduce the daily cost despite of increasing the total energy consumption. In this paper, we study the effect of the EV on the cost and dissatisfaction in our proposed method. © 2018 IEEE
Measured impact of different back-off points and cooling methods on pulse-to-pulse stability and sidelobe level of a high-power solid-state amplifier
, Article IET Radar, Sonar and Navigation ; Volume 14, Issue 2 , 2020 , Pages 335-340 ; Khodarahmi, E ; Ebrahimi, E ; Ahmadi, B ; Jalali, M ; Sharif University of Technology
Institution of Engineering and Technology
2020
Abstract
Using solid-state power amplifiers for next generation of weather radars becomes feasible by pulse compression techniques. In this study a 1.5 kW solid-state power amplifier (transmitter) for C-band weather radars is designed and fabricated by GaN high electron mobility transistor (HEMT) technology. An experimental setup based on heterodyne receiver with 16-bit digitiser is developed to investigate the behavior of the power amplifier under different cooling methods and back-off points. Several measurements with shaped LFM pulse show an approximately identical pulse to pulse (P2P) stability for 3 dB compression, P1dB and 2 dB back-off points while the best sidelobe level (SLL) is achieved for...
Probabilistic safety assessment of a UF 6 production process
, Article Advances in Safety, Reliability and Risk Management - Proceedings of the European Safety and Reliability Conference, ESREL 2011 ; 2012 , Pages 1384-1389 ; 9780415683791 (ISBN) ; Sharif University of Technology
2012
Abstract
Application of Probabilistic Safety Assessment (PSA) to a Uranium hexafluoride (UF 6) production process is presented in this paper. The process is constituted from three main units: UF 4 conversion to UF 6, condensation of produced UF 6 gas and tail gas treatment. Radioactive gas is present in all parts of the process and occurrence of high pressure or high temperature in the process equipments may lead to radioactive release to workplace and environment. The work is mainly based on PSA experience in nuclear power plants. Accordingly for the process, eight group of Initiating Events (IE) that lead to UF 6 gas release have been identified using HAZOP study. For each IE, based on related...
On the temperature control in self-controlling hyperthermia therapy
, Article Journal of Magnetism and Magnetic Materials ; Volume 416 , 2016 , Pages 134-140 ; 03048853 (ISSN) ; Sharif University of Technology
Elsevier
2016
Abstract
In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature...
Atmospheric icing effects of S816 airfoil on a 600 kW wind turbine's performance
, Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2693-2705 ; 10263098 (ISSN) ; Sharif University of Technology
Sharif University of Technology
2018
Abstract
This study investigates the aerodynamic loads and energy losses of a typical 600 kW wind turbine with S816 airfoil blade under two different icing conditions. Three sections at different radial positions were considered to estimate the icing effect along the blade. Ice accretion simulations in wet and dry regimes were carried out using the NASA LEWICE 3.2 computer program. The airflow simulations were performed with CFD method and SST k -ω turbulence model. The results of these simulations, including streamlines, surface pressure, skin friction, lift, and drag coefficients, were inspected for both clean and iced airfoils. In the case of wet iced airfoil, a separation bubble was created in...
Investigation on the Effects of the Polyacrylamide Copolymers and Their Blends with Sulfonated Lignin on the Soil Stabilization
, M.Sc. Thesis Sharif University of Technology ; Ramazani Saadatabadi, Ahmad (Supervisor) ; Ebrahimi, Hossein (Co-Supervisor)
Abstract
In recent years, dust pollution has become a worldwide issue due to the creation of serious environmental problems and the effects it has on human health. In this research, an environmentally friendly soil stabilizer has been synthesized, and its performance has been investigated. Acrylamide monomers were grafted onto sodium lignosulfonate chains, utilizing solution polymerization. The soil of the Ahvaz deserts was used in the analyses. Using EDX and DLS analyses, the components of this soil and the particle size distribution of the used soil were obtained. Characterization of the functional groups and the structure of the graft copolymer were done by FTIR and H-NMR analysis, respectively,...
NOx Reduction from the Exhaust Gas of Marine Diesel Engines Using Non-Thermal Plasma
, M.Sc. Thesis Sharif University of Technology ; Borghei, Mehdi (Supervisor) ; Hamzehlouyan, Tayebeh (Supervisor) ; Hajjar, Zeinab (Supervisor) ; Khani, Mohammad Reza (Supervisor)
Abstract
Environmental regulations with respect to the marine diesel emissions have become stricter during recent years, thereby imposing traffic limitations on Iranian ships preventing them to enter emission control areas. Nitrogen oxides (NOx), as one of most important air pollutants, have adverse impacts on public health and ecosystem, so as the ships are the primary source of NOx internationally, the after-treatment system finds more urge to be developed. In this study, a NOx reduction system using non-thermal plasma technology is studied in order to determine its application and efficiency for NOx removal from the exhaust gas of Iranian marine diesel engines. Meanwhile, important factors were...
Dunford-Taylor integral and the isotropic tensor valued functions having the commutative property with their tensor argument
, Article Advanced Materials Research, 16 September 2011 through 18 September 2011 ; Volume 433-440 , September , 2012 , Pages 3308-3314 ; 10226680 (ISSN) ; 9783037853191 (ISBN) ; Asghari, M ; Sharif University of Technology
2012
Abstract
Isotropic tensor valued functions of tensor arguments play an important role in the formulation of the equations governing the behavior of solid materials in the field of continuum mechanics. When the tensor argument is non-symmetric, the complexity and the difficulty in dealing with the tensor functions are high. In this work, the issue of expressing an isotropic tensor valued tensor function of a non-symmetric tensor argument is attention by utilizing the Dunford-Taylor integral. An important subclass of the isotropic tensor functions is considered with the commutative property
Formaldehyde biodegradation using an immobilized bed aerobic bioreactor with pumice stone as a support
, Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1372-1376 ; 10263098 (ISSN) ; Borghei, M ; Sharif University of Technology
2011
Abstract
The objective of this study is the investigation of formaldehyde degradation in a bioreactor with pumice stone as a support. The reactor was tested at different synthetic wastewater concentrations with total COD of 500, 1000 and 1500 mgL, respectively, at 24 h hydraulic retention time. The effect of feed composition was tested by changing the COD TCOD FA ratio in order to analyze the impact of formaldehyde concentration. The average formaldehyde and COD removal efficiencies obtained in the reactor were 97.1% and 88%, respectively. The maximum COD and formaldehyde removal efficiencies occurred at the COD TCOD F of 41 at COD T=1000mgL. The effect of toxic shock on reactor performance was...
Port-Hamiltonian control of a brachiating robot via generalized canonical transformations
, Article 2016 American Control Conference, ACC 2016, 6 July 2016 through 8 July 2016 ; Volume 2016-July , 2016 , Pages 3026-3031 ; 07431619 (ISSN); 9781467386821 (ISBN) ; Namvar, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2016
Abstract
This paper is devoted to the design of a port Hamiltonian controller for different scenarios of brachiation movement by a two-link bio-inspired robot called brachiating robot. A unified technique for trajectory tracking control problem of nonholonomic (drift-less) port Hamiltonian systems was introduced in the past, which exploits a generalized canonical transformation to form an error system in order to convert the trajectory tracking problem into a stabilization one. Although the method is novel and promising, only fully actuated systems are considered and success of the approach relies on the possibility of solving a set of partial differential equations (PDEs). Considering the fact that...
Numerical investigation of the forward and backward travelling waves through an undulating propulsor: performance and wake pattern
, Article Ships and Offshore Structures ; Volume 11, Issue 5 , 2016 , Pages 517-539 ; 17445302 (ISSN) ; Abbaspour, M ; Sharif University of Technology
Taylor and Francis Ltd
2016
Abstract
Recently, the mechanisms of natural undulatory locomotion of aquatic animal swimming have become one of the most significant issues for the researchers, swimmers and engineers. This study aims to elucidate and compare the propulsive vortical signature and performance of backward (negative undulation) and forward (positive undulation) travelling waves through a typical fishlike propulsor by a systematic numerical study. The numerical approach uses a pressure-based finite volume method solver to solve Navier–Stokes equations in an arbitrary Lagrangian–Eulerian framework domain containing a two-dimensional NACA 0012 foil moving with prescribed kinematics. Some of the important findings are: (1)...
A comparative numerical study on the performances and vortical patterns of two bioinspired oscillatory mechanisms: Undulating and pure heaving
, Article Applied Bionics and Biomechanics ; Volume 2015 , 2015 ; 11762322 (ISSN) ; Abbaspour, M ; Sharif University of Technology
IOS Press
2015
Abstract
The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging) motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces.This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian- Eulerian (ALE) framework domain containing a 2D NACA0012 foil...
Numerical investigation of the forward and backward travelling waves through an undulating propulsor: performance and wake pattern
, Article Ships and Offshore Structures ; Apr , 2015 ; 17445302 (ISSN) ; Abbaspour, M ; Sharif University of Technology
Taylor and Francis Ltd
2015
Abstract
Recently, the mechanisms of natural undulatory locomotion of aquatic animal swimming have become one of the most significant issues for the researchers, swimmers and engineers. This study aims to elucidate and compare the propulsive vortical signature and performance of backward (negative undulation) and forward (positive undulation) travelling waves through a typical fishlike propulsor by a systematic numerical study. The numerical approach uses a pressure-based finite volume method solver to solve Navier–Stokes equations in an arbitrary Lagrangian–Eulerian framework domain containing a two-dimensional NACA 0012 foil moving with prescribed kinematics. Some of the important findings are: (1)...