Loading...
Search for: eftekhar--zahra
0.185 seconds

    Diffusion of Innovations in Social Networks Based on Game Theoretic Approaches

    , M.Sc. Thesis Sharif University of Technology Eftekhar, Milad (Author) ; Ghodsi, Mohammad (Supervisor)
    Abstract
    Recently, computer scientists and economists have defined many joint problems and cooperate widely in various areas. Importance of this interconnection is clear for everybody, now. New works have been conducted, nowadays, to use the daily - increasing web-based social networks in viral marketing for improving companies profits. The main problem which is proved to be NP-Complete in this context is about discovering k most influential nodes in a network. In this dissertation, we generalize the problem to a group-based version and we we use group-based advertising to achieve our main goal. A new algorithm called Group-Based Diffusion technique is proposed in this thesis for solving this problem... 

    Estimation of Origin-Destination Trip Matrix Using Spatio-Temporal Data of Cell Phone Networks Collected based on the PLU method

    , M.Sc. Thesis Sharif University of Technology Eftekhar, Zahra (Author) ; Shafahi, Yousef (Supervisor)
    Abstract
    Origin-destination (OD) matrix is one of the most important sources of information used in planning and management of transportation networks. Estimation of a precise OD matrix is a fundamental component for enabling the administrative authorities to optimize the use of their transportation network. Traditionally, urban planners use direct approaches including household questionnaires to estimate OD matrices. These methods are time-consuming and costly. Strategies that are more recent like Bluetooth, Wi-Fi, and RFID scanners and detectors include deficient precision and the additional cost of accessories. Exploiting GPS technology in spite of its high locating accuracy, due to user... 

    Trajectory Estimation of a Vehicle Using Stereo Cameras

    , M.Sc. Thesis Sharif University of Technology Eftekhar, Parham (Author) ; Moghadasi, Reza (Supervisor)
    Abstract
    Visual odometry(VO) is the process of estimating the egomotion of an agent(e.g., vehicle, human, and robot) using the input of a single or multiple cameras attached to it. Application domains include robotics, wearable computing, augmented reality, and automotive. The term was chosen for its similarity to wheel odometry, which incrementally estimates the motion of a vehicle by integrating the number of turns of its wheels over time. Likewise, VO operates by incrementally estimating the pose of the vehicle through examination of the changes that movements induces on the images of its onboard cameras. For the VO to work effectively, there should be sufficient illumination in the environment... 

    Processing the Local Field Potential Signals in Comparison to Neighboring Simple and Complex Neurons of Primary Visual Cortex

    , M.Sc. Thesis Sharif University of Technology Eftekhar, Morteza (Author) ; Lashgari, Reza (Supervisor)
    Abstract
    In neural systems of living organism, moreover than differences in anatomic structure of cells, there is also differences in physiological functions of analogous cells.Specification and categorization of neurons based on physiological functions is one of objectives of neuroscience. Study of cognitive behaviors and systematic study of neural system, modeling and practical applications in neural prosthesis design are some of applications of categorizing neural cells. Neural signals can be studied by Spike rate of a single neuron activity or Local Field Potential (LFP) of a finite number of neurons. In previous studies neurons of first visual cortex are divided into two groups of simple and... 

    Dynamic response of Timoshenko beam under moving mass

    , Article Scientia Iranica ; Volume 20, Issue 1 , 2013 , Pages 50-56 ; 10263098 (ISSN) Eftekhar Azam, S ; Mofid, M ; Khoraskani, R. A ; Sharif University of Technology
    2013
    Abstract
    In this article, the dynamic responses of a Timoshenko beam subjected to a moving mass, and a moving sprung mass are analyzed. By making recourse to Hamilton's principle, governing differential equations for beam vibration are derived. By using the modal superposition method, the partial differential equations of the system are transformed into a set of Ordinary Differential Equations (ODEs). The resulted set of ODEs is represented in state-space form, and solved by means of a numerical technique. The accuracy of the results has been ascertained through comparing the results of our approach with those available from previous studies; moreover, a reasonable agreement has been obtained. The... 

    A new method of phase noise compensation in OFDM

    , Article 2003 International Conference on Communications (ICC 2003), Anchorage, AK, 11 May 2003 through 15 May 2003 ; Volume 5 , 2003 , Pages 3443-3446 ; 05361486 (ISSN) Gholami, M. R ; Nader Esfahani, S ; Eftekhar, A. A ; Sharif University of Technology
    2003
    Abstract
    The local oscillator phase noise can severely affect the performance of OFDM systems. In this paper a new method is presented for compensation of this phase noise. The method is based on the fact that the scattered pilots, which are used for channel estimation, are subject to the same phase error as the OFDM symbols. Least square approach is used to exploit the phase noise information that exists in the scattered pilots and compensate the phase noise on the OFDM symbols. Simulation results show that the method is very effective, especially in high SNR  

    Novel physics-informed artificial neural network architectures for system and input identification of structural dynamics PDEs

    , Article Buildings ; Volume 13, Issue 3 , 2023 ; 20755309 (ISSN) Moradi, S ; Duran, B ; Eftekhar Azam, S ; Mofid, M ; Sharif University of Technology
    MDPI  2023
    Abstract
    Herein, two novel Physics Informed Neural Network (PINN) architectures are proposed for output-only system identification and input estimation of dynamic systems. Using merely sparse output-only measurements, the proposed PINNs architectures furnish a novel approach to input, state, and parameter estimation of linear and nonlinear systems with multiple degrees of freedom. These architectures are comprised of parallel and sequential PINNs that act upon a set of ordinary differential equations (ODEs) obtained from spatial discretization of the partial differential equation (PDE). The performance of this framework for dynamic system identification and input estimation was ascertained by... 

    Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-Responsive nanocarrier for triggered release of erythromycin [electronic resource]

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2014, Volume 63, Issue 13, Pages 692-697 Pourjavadi, A. (Ali) ; Mazaheri Tehrani, Zahra ; Sharif University of Technology
    Abstract
    A pH-responsive drug delivery system based on core shell structure of mesoporous silica nanoparticle (MSN) and chitosan-PEG copolymer was prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and high-resolution transmission microscope (HR-TEM) techniques. In order to improve compatibility MSN and drug, mesoporous nanosilica was modified by 3-aminopropyl triethoxysilane. The release of erythromycin (a macrolide antibiotic) as a model drug was investigated in two pHs, 7.4 and 5.5  

    Application of Kalman Filters for Dynamic Control of Beams Subjected to Moving Load and Mass

    , M.Sc. Thesis Sharif University of Technology Moradi, Sarvin (Author) ; Mofid, Masood (Supervisor) ; Eftekhar Azam, Saeed (Supervisor)
    Abstract
    In this study, for the first time, a comprehensive and online framework for active control of beams subjected to the moving mass is presented. In active control problems, comprehensive knowledge of system states is required to determine the control force, but it is not possible to measure all system states in practice with a limited number of sensors. In this regard, Kalman filters are introduced to control systems to help improve the performance of control systems as observers of system states. However, in the case of beams subjected to the moving mass, due to the moving nature of the passing mass, in addition to system states, it is also important to identify the input load. In previous... 

    New smart carrageenan-based superabsorbent hydrogel hybrid: Investigation of swelling rate and environmental responsiveness

    , Article Journal of Applied Polymer Science ; Volume 117, Issue 6 , September , 2010 , Pages 3228-3238 ; 00218995 (ISSN) Salimi, H ; Pourjavadi, A ; Seidi, F ; Eftekhar Jahromi, P ; Soleyman, R ; Sharif University of Technology
    2010
    Abstract
    Synthesis of novel natural-based superabsorbents with improved properties is of prime importance in many applications. In this article we report an efficient synthesis of new polysaccharide-based superabsorbent hybrid composing carrageenan, acrylic acid, sodium acrylate, and 2-hydroxyethyl acrylate through homogenous solution polymerization process. Infrared spectroscopy and thermogravimetric analysis (TGA) were carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). To deeper studies on the structure-property relation in SAP hydrogels, three hydrogels with different acrylic acid/2-hydroxyethyl... 

    A new simplified formula in prediction of the resonance velocity for multiple masses traversing a thin beam

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 133-141 ; 10263098 (ISSN) Afghani Khoraskani, R ; Mofid, M ; Eftekhar Azam, S ; Ebrahimzadeh Hassanabadi, M ; Sharif University of Technology
    2016
    Abstract
    In this article, transverse vibration of an Euler-Bernoulli beam carrying a series of traveling masses is analyzed. A semi-analytical approach based on eigenfunction expansion method is employed to achieve the dynamic response of the beam. The inertia of the traveling masses changes the fundamental period of the base beam. Therefore, a comprehensive parametric survey is required to reveal the resonance velocity of the traversing inertial loads. In order to facilitate resonance detection for engineering practitioners, a new simplified formula is proposed to approximate the resonance velocity  

    Theoretical and Computational Investigation of Quantum Plasmonic Properties of Nanocluster Dimers

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Erfan (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    In today's era, metal nanoparticles play an important role in technologies emerging from different sciences, such as chemistry, physics, optics, material science, due to their unique characteristics. In the development of nanooptics science, it can be said that metal nanoparticles play an important role. The ability of conductive electrons collective oscillation causes surface charge density fluctuations in nanoparticles, this phenomenon is known as surface plasmons. Surface plasmons are surprisingly coupled with light and cause the significant increase in the intensity of optical fields induced in nanoparticles. Therefore, with the presence of localized surface plasmons or plasmon... 

    Theoretical Investigation of Ab-initio MD Approach to Increase the Efficiency and Accuracy of VCD Spectrum Calculation

    , M.Sc. Thesis Sharif University of Technology Hadi, Hossein (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    Understanding of the Molecules is the main purpose of the chemistry. Ab-initio molecular dynamics (AIMD) as a branch of the computational chemistry, tries to give us a deep comprehension of the molecule, and its chemical, physical and optical activities. This comprehension, relies on the accuracy of quantum mechanics, in addition to the speed of the classical mechanics. The mixing of the quantum mechanics and the classical mechanics could simulate activities of the atoms in the time-domain, provided the mixing is done with precaution. This, in turn, helps us to forecast the response of a molecule in different situations, and also translating the macroscopic phenomena in a nanoscopic... 

    Investigation of Plasmonic Excitation in Carbonic Nanostructures Within Near-IR

    , M.Sc. Thesis Sharif University of Technology Madadi, Mahkam (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    To date, the plasmonic properties of many metallic and semi-conducting materials have been investigated and used in various industries. One of the plasmonic material categories that have always been considered is polycyclic aromatic hydrocarbon or PAH, whose plasmonic resonance energy depends on the charge state of the molecule. In this regard, it is easy to change the plasmonic resonance energy via changing the induced charge, which is a unique feature of the mentioned materials. In addition, plasmonic structures with excitations in the infrared region are able to enhance the vibration intensity of absorbed molecules by increasing the electric field around themselves. Therefore, they have... 

    Using Nonlinear Effects of Light for Optical Signal Processing

    , M.Sc. Thesis Sharif University of Technology Shatery, Farshid (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Ultrafast signal processing in time-domain with high resolution and reconfigura-bility is a challenging task. This paper, for the first time, introduces a time-varying metasurface consisting of graphene microribbon array for implementing time-lens in the terahertz domain. Given that the surface conductivity of graphene is proportional to the Fermi energy level in the THz regime, it is possible to change the phase property of the incident electromagnetic pulse by changing the Fermi level while the Fermi level itself is a function of voltage. Upon this fact, a quadratic temporal phase modulator, namely time-lens has been realized. This phase modulation is applied to the impinging signal in the... 

    Using Simulation-Optimization Approach for Fire Station Location and Vehicle Assignment Problem: a Case Study in Tehran, Iran

    , M.Sc. Thesis Sharif University of Technology Pirmohammadi, Ali (Author) ; Amini, Zahra (Supervisor)
    Abstract
    In this research, the problem of locating fire stations and allocating equipment has been studied and a simulation-optimization approach has been presented to solve the problem. The mathematical models of this research were developed based on the idea of the randomness of the covered demand and the maximum expected coverage model. In these models, the issue of non-availability of equipment to cover accidents, the random nature of accidents, various fire incidents and the equipment needed to cover them are considered. Two mathematical models with deterministic and non-deterministic approach with different scenarios for demand are proposed. The non-deterministic model is developed with the aim... 

    Introducing An Integrated Framework For Solving The Fleet Planning Problem Using A Simulation-Optimization Approach

    , M.Sc. Thesis Sharif University of Technology Sahebi, Armin (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the main concerns of industrial companies’ managers is providing an efficient logistics system. To achieve an efficient logistics system, the fleet planning problem is studied by many researchers in recent years. This problem consists of multiple sub-problems at three levels: operational, tactical, and strategic. These sub-problems are closely related to each other and need to be studied and addressed in an integrated manner. In this research, an attempt is made to provide an integrated framework to solve the vehicle routing problem (operational), outsourcing problem (tactical), and fleet composition problem (strategic). These problems have various uncertainties, including customer... 

    Design and fabrication of photonic crystal nano-beam resonator: transmission line model

    , Article Journal of Lightwave Technology ; Volume 32, Issue 1 , 14 November 2013 , Pages 91-98 Miri, M ; Sodagar, M ; Mehrany, K ; Eftekhar, A. A ; Adibi, A ; Rashidian, B ; Sharif University of Technology
    14 November 2013
    Abstract
    We present a new method for modeling and design of photonic crystal nano-beam resonators (PCNBRs) based on cascaded transmission lines. The proposed model provides an accurate estimate of the PCNBRs properties such as resonance wavelength and quality factor (Q) with much smaller computation cost as compared to the brute-force numerical methods. Furthermore, we have developed a straightforward technique for the design of high-Q PCNBRs based on resonance modes with Gaussian electromagnetic field profiles. The results obtained by using the proposed transmission line model are compared against numerical and experimental results and the accuracy of the model is verified. The proposed model... 

    Wideband tunable photonic crystal cavity with electrostatic actuation

    , Article 2012 IEEE Photonics Conference, IPC 2012, 23 September 2012 through 27 September 2012 ; September , 2012 , Pages 266-267 ; 9781457707315 (ISBN) Miri, M ; Sodagar, M ; Eftekhar, A. A ; Mehrany, K ; Rashidian, B ; Adibi, A ; Sharif University of Technology
    2012
    Abstract
    We present a wideband tunable optical cavity based on electrostatic actuation. Over 60nm shift in wavelength is achieved by applying less than 1 Volt corresponds to a mechanical displacement of 30nm  

    Analytical Modelling and Optimization of Disk Type, Slot Less Resolver

    , M.Sc. Thesis Sharif University of Technology Moheyseni, Atefeh (Author) ; Nasiri Gheidari, Zahra (Supervisor)
    Abstract
    Resolvers, due to their robust structure, are widely used in automation systems. Among the types of resolvers, the accuracy of the Wound Rotor (WR) resolver in the occurrence of common mechanical errors is higher than other types of resolvers. therefore, in this thesis, an AFWRR is studied to improve the performance. Increasing the number of poles in WR resolvers is a good solution for increasing the accuracy of these electromagnetic position sensors. However, high-speed WR resolvers due to employing fractional slot windings suffer from rich sub-harmonics in the induced voltages. A common solution for suppressing the undesirable sub-harmonics is using multi-layer winding with appropriate...