Loading...
Search for: emami--f
0.114 seconds

    Elastic interactive buckling strength of corrugated steel shear wall under pure shear force

    , Article Structural Design of Tall and Special Buildings ; Volume 26, Issue 8 , 2017 ; 15417794 (ISSN) Hosseinzadeh, L ; Mofid, M ; Aziminejad, A ; Emami, F ; Sharif University of Technology
    2017
    Abstract
    Different ways have been presented to prevent elastic buckling of steel shear walls. One of these solutions is corrugated shear wall. In this type of wall, shear buckling strength increases without increasing the thickness of the panel. Numerical modeling results indicate that, always, shear buckling strength of corrugated panels is more than the flat panels and with the right choice of the geometric parameters of corrugated panels; without increasing the thickness of the panel, we can improve buckling strength significantly. In the trapezoidal corrugated panels, reducing the width of the subpanels do not always increase buckling strength of the panel, but it changes the panel buckling shape... 

    Effect of anode compositions on the current efficiency of zinc electrowinning

    , Article Proceedings - European Metallurgical Conference, EMC 2011 ; Volume 2 , 2011 , Pages 387-396 ; 9783940276377 (ISBN) Dashti, S ; Rashchi, F ; Vahidi, E ; Emami, M ; Khoshnevisan, A ; Sharif University of Technology
    2011
    Abstract
    The main goals in zinc electrowinning process are decreasing of power consumption and increasing of current efficiency. The purpose of this research was to investigate effect of different alloy compositions used in production of lead-based anodes on the zinc electrowinning process. The anode compositions prepared and examined in this study were binary alloys Pb - (0.5 and 2 %) Ag and quaternary alloys Pb - 0.5 % Ag - 1 % Ca - 2 % Sn, Pb - 0.5 % Ag - 1 % Ca - 1 % Sn - 1 % Sb and Pb - 0.5 % Ag - 1 % Ca - 1 % Sn - 1 % Bi. The electrowinning experiments were conducted using a laboratory-scale apparatus, at a plating time of 4 hours, a current density of 500 to 1000 A/m2, industrial zinc sulfate... 

    Equivalent Linear Model Identification and Periodic Control of a Mono-Wing Aerial Vehicle

    , Article Journal of Intelligent and Robotic Systems: Theory and Applications ; Volume 108, Issue 4 , 2023 ; 09210296 (ISSN) Sabeti, M. H ; Ezabadi, M ; Banazadeh, A ; Saghafi, F ; Emami, S.A ; Sharif University of Technology
    Institute for Ionics  2023
    Abstract
    This research is dedicated to investigating the dynamics identification and periodic control of a mono-wing aerial vehicle. The study employs well-established system identification strategies in both time and frequency domains to extract equivalent linear models. By exciting the system dynamics with a frequency sweep signal, non-parametric and parametric models are derived for each control channel, namely the flap and thrust. Furthermore, a comprehensive nonlinear simulation model is developed to facilitate trade study and design optimization. The identified models undergo careful validation using a two-square wave input signal, demonstrating their accuracy through a comparison with flight... 

    An electroconductive, thermosensitive, and injectable chitosan/pluronic/gold-decorated cellulose nanofiber hydrogel as an efficient carrier for regeneration of cardiac tissue

    , Article Materials ; Volume 15, Issue 15 , 2022 ; 19961944 (ISSN) Tohidi, H ; Maleki Jirsaraei, N ; Simchi, A ; Mohandes, F ; Emami, Z ; Fassina, L ; Naro, F ; Conti, B ; Barbagallo, F ; Sharif University of Technology
    MDPI  2022
    Abstract
    Myocardial infarction is a major cause of death worldwide and remains a social and healthcare burden. Injectable hydrogels with the ability to locally deliver drugs or cells to the damaged area can revolutionize the treatment of heart diseases. Herein, we formulate a thermo-responsive and injectable hydrogel based on conjugated chitosan/poloxamers for cardiac repair. To tailor the mechanical properties and electrical signal transmission, gold nanoparticles (AuNPs) with an average diameter of 50 nm were physically bonded to oxidized bacterial nanocellulose fibers (OBC) and added to the thermosensitive hydrogel at the ratio of 1% w/v. The prepared hydrogels have a porous structure with open... 

    On the hysteretic behavior of trapezoidally corrugated steel shear walls

    , Article Structural Design of Tall and Special Buildings ; Vol. 23, Issue. 2 , 10 February , 2014 , pp. 94-104 ; ISSN: 15417794 Emami, F ; Mofid, M ; Sharif University of Technology
    2014
    Abstract
    At present, corrugated plates have numerous applications such as web of plate girders and aerospace applications. Higher out-of-plane stiffness and initial elastic strength of the corrugated plates compared with flat plates are reasons for consideration. This study investigates the behavior of trapezoidally corrugated steel plate shear walls (TCSPSWs) under monotonic and cyclic loadings. Finite element analyses that include both material and geometric nonlinearities are employed for the examination. The results from finite element analysis are verified through tested specimen findings. Moreover, the behavior of the steel shear walls with the flat infill panels and the corrugated plate infill... 

    Cyclic test of steel plate shear wall designed by PFI method

    , Article Advanced Materials Research ; Volume 378-379 , 2012 , Pages 785-788 ; 10226680 (ISSN) ; 9783037852880 (ISBN) Emami, F ; Mofid, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, Plate Frame Interaction (PFI) developed by other researches for modeling Steel Plate Shear Wall (SPSW) is applied for designing a half-scale, single bay and one story SPSW. After designing of SPSW, one specimen is constructed accordingly. In order to determine the mechanical properties of steel, coupon test is performed; and then again theoretical relations based on PFI is re-checked. In this study, gravity loads are neglected and only seismic resistance of SPSW is considered. With cyclic lateral loading as quasi-static load, according to Acceptance Criteria for Cyclic Racking Shear Tests For Metal-Sheathed Shear Walls with Steel Framing (AC154) and obtaining its hysteretic... 

    Comparison of beam shapes and transmission powers of two prism ducts

    , Article Australian Journal of Basic and Applied Sciences ; Volume 4, Issue 10 , 2010 , Pages 4922-4929 ; 19918178 (ISSN) Emami, Z ; Golnabi, H ; Sharif University of Technology
    2010
    Abstract
    Design and performance of two-stage optical beam shaping system based on a plastic fiberbundle, prism coupled waveguide, is described in this study. Such systems offer practical means to modify and change the output beam shape at two stages and also provide quantitative information concerning the output beam intensity. It is possible to investigate output power and image transmittance data by using a light source for illumination and image analysis by a CCD/digital camera. The photograph picture of the illuminating LED beam shows a circular shape with a diameter of about 10 mm at its output point. Picture of the fiber-bundle output beam is also taken, which shows a rectangular shape with a... 

    On the improvement of steel plate shear wall behavior using energy absorbent element

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 11-18 ; 10263098 (ISSN) Emami, F ; Mofid, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Structural engineers have recognized unstiffened Steel Plate Shear Wall (SPSW) as an economical lateral resisting system due to the post-buckling capacity, energy dissipation, and deformability. This study investigates practical application of an added Energy Absorbent Element (EAE), subjoined to the SPSW in order to improve seismic behavior of the SPSW. The EAE is an aluminum shear panel with or without bracings and surrounding frame. Furthermore, a series of parametric studies are implemented to examine the effect of dimensions, position, and formation of the EAE. It is assumed that the lateral loading is applied as quasi-static loading. Further, nonlinearity of the material and the... 

    Intelligent trajectory tracking of an aircraft in the presence of internal and external disturbances

    , Article International Journal of Robust and Nonlinear Control ; Volume 29, Issue 16 , 2019 , Pages 5820-5844 ; 10498923 (ISSN) Emami, A ; Banazadeh, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    This research deals with developing an intelligent trajectory tracking control approach for an aircraft in the presence of internal and external disturbances. Internal disturbances including actuators faults, unmodeled dynamics, and model uncertainties as well as the external disturbances such as wind turbulence significantly affect the performance of the common trajectory tracking control approaches. There are several fault-tolerant control approaches in the literature to overcome the effects of specific actuator or sensor faults during the flight. However, trajectory tracking control of an air vehicle in the presence of unexpected faults and simultaneous presence of wind turbulence is... 

    Online identification of aircraft dynamics in the presence of actuator faults

    , Article Journal of Intelligent and Robotic Systems: Theory and Applications ; Volume 96, Issue 3-4 , 2019 , Pages 541-553 ; 09210296 (ISSN) Emami, A ; Banazadeh, A ; Sharif University of Technology
    Springer  2019
    Abstract
    In this paper, a multiple model-based nonlinear identification approach is introduced for a conventional aircraft in the presence of different types of actuator faults. Occurrence of actuator faults can obviously reduce the validity of a predetermined dynamic model of nonlinear systems. In such cases, use of multi-model structures can be an effective choice. However, determining the optimal validity functions of the local models in a multi-model structure is still a challenging problem. This problem becomes even more challenging in case of unpredictable faults, which are not considered in training the local models. In this paper, two effective techniques are proposed for online determination... 

    Thermodynamic Analysis of the Temporal Changes in Salt Concentration in Saline Lakes (the case of Urmia lake)

    , M.Sc. Thesis Sharif University of Technology Emami, Neda (Author) ; Tajrishi, Masoud (Supervisor)
    Abstract
    Urmia Lake is a strong electrolyte containing various salts, with a thermodynamic identity. Changes in the temperature and volume of lake water cause a change in the concentration of ions in this brine as well as the composition and precipitation of salts in the lake. As a result of these changes, the thermodynamic properties of brine are also changed. The purpose of this study was to investigate the effect of mixing the rivers entering the lake and calculate and analyze the changes in the quality and hydrogeochemical characteristics of Urmia Lake and the amount of precipitation and dissolution of the main minerals in Urmia Lake during the period of 2007-2013 per month. For this purpose,... 

    Synthesis of Dextran-MA-Gly-Gly-NHNH2 Copolymer as a Possible Biodegradable and pH-responsive Carrier for Doxorubicin

    , M.Sc. Thesis Sharif University of Technology Emami, Zahraosadat (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Some chemotherapy drugs have unpleasant side effects and use them due to the instability and low solubility in blood flow is associated with problems and limitations.To solve these problems, controlled drug delivery systems have been proposed. In this process, the polymer increased solubility, stability and low toxicity and the active drug realease in a particular tissue or controlled speed. Therefore be less adverse side effects. Dextran is the one of biocompatible and water-soluble polysaccharides that due to its unique characteristics, widely used as carriers in drug delivery. Dextran molecules can bind to drugs and increased solubility, stability, and reduce their side effects.... 

    Linear multi-variable control technique for smart power management of wind turbines

    , Article 2012 International Conference onAdvanced Mechatronic Systems, ICAMechS 2012 ; 2012 , Pages 559-564 ; 9780955529382 (ISBN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    2012
    Abstract
    Variable speed wind turbines are widely used in the modern power industry. These turbines that are usually driven by doubly fed induction generators (DFIG) contain two groups of controlling variables; mechanical variables like pitch angle, and electrical variables like rotor voltage. During the turbine operation, with variable wind speed, power must be managed in two different regimes; power optimization and power limitation. In the current research, initially a non-linear simulation, based on the general wind turbine dynamic model is presented. Then, the desired controllers for both pitch angle and generator voltage components are constructed. To validate turbine behavior and controller... 

    Robustness investigation of the linear multi-variable control technique for power management of DFIG wind turbines

    , Article International Journal of Advanced Mechatronic Systems ; Volume 5, Issue 1 , 2013 , Pages 37-46 ; 17568412 (ISSN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    2013
    Abstract
    Variable speed wind turbines are widely used in the modern power industry. These turbines that are usually driven by doubly fed induction generators (DFIGs) contain two groups of controlling variables; mechanical variables like pitch angle and electrical variables like rotor voltage. During the turbine operation, with variable wind velocity, power must be managed in two regimes; power optimisation and power limitation. In the current research, initially a non-linear simulation, based on the general wind turbine dynamic model is presented. Then, the desired controllers for both pitch angle and generator voltage components are constructed. After designing the controller, in order to... 

    Robustness investigation of a ducted-fan aerial vehicle control, using linear, adaptive, and model predictive controllers

    , Article International Journal of Advanced Mechatronic Systems ; Volume 6, Issue 2-3 , 2015 , Pages 108-117 ; 17568412 (ISSN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    Inderscience Publishers  2015
    Abstract
    A comparison of three common controllers for stabilising a vertical take-off and landing air vehicle is presented. RMIT is a small sized tail-sitter ducted fan air vehicle with a particular configuration layout, multiple control surfaces, low weight, and high-speed flight capability. The main problem here is control effectiveness at low flight speeds and transition manoeuvres because of the inherent instability. In the current study, a comprehensive nonlinear model is firstly developed for RMIT, followed by a validation process. Subsequently, linear, adaptive and model predictive controllers are designed in vertical flight. Based on the simulation results, it is shown that the linear... 

    Adaptive model predictive control-based attitude and trajectory tracking of a VTOL aircraft

    , Article IET Control Theory and Applications ; Volume 12, Issue 15 , 2018 , Pages 2031-2042 ; 17518644 (ISSN) Emami, S. A ; Rezaeizadeh, A ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    A novel adaptive model-based predictive controller for attitude and trajectory tracking of a vertical take-off and landing(VTOL) aircraft in the simultaneous presence of model uncertainties and external disturbances is introduced in this study. Animportant challenge of designing the model-based controllers is developing an accurate model, especially in the presence ofmodel uncertainties. In this study, first, the nominal model of a ducted-fan air vehicle, which is a multi-input multi-outputnonlinear system with non-minimum phase behaviour, is given as the test case of this research. After that, two modified robustand adaptive model predictive controllers are proposed for tracking a... 

    Multimodel ELM-based identification of an aircraft dynamics in the entire flight envelope

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 55, Issue 5 , 2019 , Pages 2181-2194 ; 00189251 (ISSN) Emami, S. A ; Roudbari, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The development of a multiple model-based identification algorithm is addressed in this paper for nonlinear modeling of a conventional aircraft in the entire flight envelope. The dynamic model of an aircraft varies significantly depending on changes in the flight condition of the air vehicle including the altitude and the equivalent air speed. Therefore, the conventional identification approaches for generating a single nonlinear model with time-invariant parameters cannot be used in the entire flight envelope of an aircraft. Accordingly, a multiple model-based approach using nonlinear autoregressive exogenous neural networks is introduced in this paper as a powerful tool in identifying... 

    Fault-tolerant predictive trajectory tracking of an air vehicle based on acceleration control

    , Article IET Control Theory and Applications ; Volume 14, Issue 5 , 2020 , Pages 750-762 Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    A novel fault-tolerant model predictive control (MPC)-based trajectory tracking approach for an aerial vehicle is presented in this study. A generalised online sequential extreme learning machine is introduced first to identify the corresponding coefficients of actuator faults. Subsequently, a robust trajectory tracking control is developed based on MPC, where the system constraints can be effectively considered in the designed control scheme. Trajectory tracking control is achieved by controlling only the acceleration of the aerial robot in the MPC structure. This leads to less computational burden and faster closed-loop dynamics. In addition, an effective disturbance observer is employed,... 

    Simultaneous trajectory tracking and aerial manipulation using a multi-stage model predictive control

    , Article Aerospace Science and Technology ; Volume 112 , 2021 ; 12709638 (ISSN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    Elsevier Masson s.r.l  2021
    Abstract
    With the exception of a few works, the current approaches to aerial manipulation control do not typically consider the system constraints in the control design process. Also, the issue of closed-loop stability in the presence of system constraints is not thoroughly analyzed. In this paper, a novel multi-stage model predictive control (MPC)-based approach for aerial manipulation is proposed to ensure the closed-loop stability in the presence of model uncertainties and external disturbances, while satisfying the operational constraints. The detailed nonlinear model of a general aerial manipulator, consisting of a quadrotor equipped with a 3 degrees of freedom manipulator, is first developed... 

    Numerical Modeling of Unsteady Partial Cavitaion over Axisymmetric Bodies Using Boundary Element Method

    , M.Sc. Thesis Sharif University of Technology Emami, Pedram (Author) ; Seif, Mohammad Saeed (Supervisor)
    Abstract
    In this thesis, the potential flow including unsteady partial cavitation around axisymmetric bodies are studied using a boundary element method (BEM) based on potential theory. For this purpose the wetted surface of the body and cavity surface are divided (approximated) to panels. Then, by applying the Green’s third identity and expressing this theory in potential flow around every surface, cavitation can be modeled by distributing the source and the dipole rings on cavity/body surface. In order to approaching this goal we introduced dipole rings distribution on the cavity and body surfaces and source rings distribution on the cavity surface. In this work the cavitation number is assumed to...