Loading...
Search for: faraji-dana--reza
0.118 seconds

    Improvement and Expansion of Characteristic Green’s Function-Complex Images Method for Extraction of Green’s Function of Finite Dielectric Structures

    , Ph.D. Dissertation Sharif University of Technology Torabi, Abdorreza (Author) ; Shishegar, Amir Ahmad (Supervisor) ; Faraji-Dana, Reza (Co-Advisor)
    Abstract
    Finite dielctric structures are commonly used in optical devices, Microwave Integrated Circuitc (MICs) and printed antennas. To analyze these structures, full-wave analysis methods cannot be employed easily. They need huge computer resources and are time-consuming especially for electrically large structures. On the other hand, asymptotic techniques may not be exact enough for these structures. In this thesis, MPIE technique is chosen as an accurate and efficient technique for analyzing these structres. To use this technique, the magnetic vector potential and electric scalar potential are required. Uniform and closed-form spatial Green's function for finite dielectric structures is... 

    Analysis of modal reflectivity of optical waveguide end-facets by the characteristic green's function technique

    , Article Journal of Lightwave Technology ; Vol. 32, Issue. 6 , 2014 , Pages 1168-1176 ; ISSN: 07338724 Torabi, A ; Shishegar, A. A ; Faraji Dana, R ; Sharif University of Technology
    2014
    Abstract
    A novel method for computation of guided mode reflectivity from optical waveguide end-facet is presented. The method is based on the characteristic Green's function (CGF) technique formulation combined with the complex images (CIs) method for dielectric planar waveguides. By separability assumption of the structure, a uniform and closed-form expression of spatial Green's function is obtained. Derived expression consists of discrete and continuous spectrum contributions which denote guided and radiation modes effects, respectively. Having a full-wave solution, efficient optimization procedure is then used to calculate the exact reflection coefficients of guided modes at the end-facets. To... 

    An efficient closed-form derivation of spatial green's function for finite dielectric structures using characteristic green's function-rational function fitting method

    , Article IEEE Transactions on Antennas and Propagation ; Vol. 62, issue. 3 , 2014 , pp. 1282-1292 ; ISSN: 0018926X Torabi, A ; Shishegar, A. A ; Faraji-Dana, R ; Sharif University of Technology
    2014
    Abstract
    A uniform and closed-form spatial Green's function for finite dielectric structures is derived by using a combination of the characteristic Green's function (CGF) and rational function fitting method (RFFM). Employing the concept of quasi leaky waves, CGF-RFFM represents both of the discrete and continuous spectrum contributions efficiently by using the modified VECTFIT algorithm. The method is examined for 2-D truncated dielectric slab while it can be implemented for 3-D structure straightforwardly. An error of less than 0.2% is achieved compared with the direct numerical integration of the spectral integral. The derived Green's function is exact for separable structures while it is... 

    Application of the characteristic green's function technique in closed-form derivation of spatial green's function of finite dielectric structures

    , Article CEM 2013 - Computational Electromagnetics International Workshop ; number 6617132 , 2013 , Pages 54-55 ; 9781479914326 (ISBN) Torabi, A ; Shishegar, A. A ; Faraji Dana, R ; Sharif University of Technology
    2013
    Abstract
    A closed-form spatial Green's function for finite dielectric structures is derived by using a combination of the characteristic Green's function (CGF) and rational function fitting method (RFFM). CGF-RFFM represents both of the discrete and continuous spectrum contributions efficiently by using the modified VECTFIT algorithm. To obtain more accurate results, reflection coefficient correction due to the surface waves (SWs) incident on the the end-facet is considered. The main advantage of this method lies in its speed as well as accuracy. Excellent agreements with the rigorous method of moments (MoM) are shown in several examples  

    Processing and Investigation of the Properties of Chitosan/Celloluse Nanocomposite Wound Dressing Fabricated by Electrospinning Method

    , M.Sc. Thesis Sharif University of Technology Faraji Safiloo, Negar (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    It is a common method to use some proper materials such as honey, herbal fibers, and minerals for covering the wounds as an effective treatment. Nowadays biopolymers and new methods of nanofiber production to build a structure similar to the natural extracellular matrix (ECM) like electrospinning are used to reduce the time of restoration and prevent from the effects of wounds such as bedsores, diabetic ulcers, and severe burns. For effective design of a wound dressing, wound feature, recovery time, physical, mechanical, and biological properties should be considered in order to best as possible heal the bound. In this research, cellulose nanocrystals with average aspect ratio of 11.8 and... 

    A Location-Routing-Inventory Problem with Cross-Docking and Split Delivery

    , M.Sc. Thesis Sharif University of Technology Faraji, Mahla (Author) ; Akbari Jokar, Mohammad Reza (Supervisor)
    Abstract
    This paper studies a multi-product, multi-period location- routing- inventory problem in a three-level supply chain including suppliers, cross-docks and customers. Each cross-dock could be supplied by more than one supplier and each customer could be supplied by more than one cross-dock. In the first phase we find the best locations for the cross-dock and allocate them to customers and suppliers by considering inventory costs. . Then, in the second phase Products are distributed from cross-docks towards customers using Heterogeneous vehicles. In this article the option for split delivery is enabled and furthermore, backlogging is allowable for each customer. The model presented in this... 

    Direct Speed Control of Permenant Magnet Synchronous Machine

    , M.Sc. Thesis Sharif University of Technology Dana, Shekoofe (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Accurate and fast position controlling is an important issue in today’s industrial needs. Drives used for position control require fast dynamics on speed control. Cascade linear controllers have sluggish response due to bandwidth limitations on speed and current loop. These structures limit the dynamics above all in high power applications where the switching frequency is low. In this thesis, deadbeat direct speed control is proposed, which overcomes limitations by cascade loops resulting in high-speed control dynamics. This approach uses a model of the plant to generate the control signals. According to measured speed and currents, the controller specifies the best voltage vector in order... 

    What surface maximizes entanglement entropy?

    , Article Physical Review D - Particles, Fields, Gravitation and Cosmology ; Vol. 90, issue. 8 , 2014 Faraji Astaneh, A ; Gibbons, G ; Solodukhin, S. N
    2014
    Abstract
    For a given quantum field theory, provided the area of the entangling surface is fixed, what surface maximizes entanglement entropy? We analyze the answer to this question in four and higher dimensions. Surprisingly, in four dimensions the answer is related to a mathematical problem of finding surfaces that minimize the Willmore (bending) energy and eventually to the Willmore conjecture. We propose a generalization of the Willmore energy in higher dimensions and analyze its minimizers in a general class of topologies Sm×Sn and make certain observations and conjectures that may have some mathematical significance  

    Ag/TiO2-nanotube plates coated with reduced graphene oxide as photocatalysts

    , Article Surface and Coatings Technology ; Volume 288 , 2016 , Pages 144-150 ; 02578972 (ISSN) Faraji, M ; Mohaghegh, N ; Sharif University of Technology
    Elsevier  2016
    Abstract
    RGO/Ag/TiO2-nanotubes/Ti plates with high photocatalytic activity were fabricated via electrochemical reduction of graphene oxide on Ag/TiO2-nanotubes. The loading of silver nanoparticles was carried out by electroless reduction of Ag1+ onto TiO2 nanotubes previously formed by anodizing titanium. Microstructure studies show that reduced graphene oxide (RGO) layers having high surface area have been deposited on the as-prepared Ag/TiO2-nanotubes, where nanoparticles of Ag had grown on the walls of TiO2-nanotubes. The results of photocatalytic experiments demonstrate that the RGO/Ag/TiO2-nanotubes/Ti plate exhibits significantly enhanced photocatalytic activity for the photocatalytic... 

    The Impact of House’s Recession on Banks’ Default Rate In The Framework of Stress Testing

    , M.Sc. Thesis Sharif University of Technology Faraji, Sara (Author) ; Nili, Farhad (Supervisor)
    Abstract
    The aim of this paper is to perform macro stress test for one of Iran’s private banks using bank’s quarterly data from Q-4 1383 to Q-4 1389. To do this, the relation of bank’s default rate with macroeconomic indicators like house prices and the growth rate of value added of services; as macroeconomic risk factors; was investigated by a linear model. Results show that the bank’s default rate has a negative relation with both risk factors.Stress testing, using monte carlo simulation; shows that reverse shocks to both house prices and the growth rate of value added of services leads to severe increase in bank’s default rate; so that with decrease of both house prices to 4 million rials at... 

    The Prediction Branching Polypropylene Monte Carlo Method

    , M.Sc. Thesis Sharif University of Technology Faraji, Hamed (Author) ; Mousavi, Ali (Supervisor)
    Abstract
    Linear structure of polypropylene, which is a direct result of Ziegler-Natta catalysts, led to the melt strength of the polymer is low and it does not show hardness strain. This defect is cause to the use of polypropylene in some processes, such as thermoforming, making foam etc. are limited. A main methods to solve this defect are branching structure of the polymer. There are three general methods for this purpose, which are modified by chemical, electron beam irradiation and polymerization in the presence of metallocene catalyst. The first two methods that past processing, polypropylene branching using linear type is produced, while the third method branching occurs during polymerization.... 

    Application of TiO2 Nanotubes Fabricated by Anodizing of Titanium as a Suitable Substrate for Deposition of Active Materials for Use in the Supercapacitors

    , Ph.D. Dissertation Sharif University of Technology Faraji, Masoud (Author) ; Gobal, Fereydoon (Supervisor)
    Abstract
    In this thesis, the improving effects of TiO2 nanotubes (TiO2NTs) fabricated by anodizing of titanium as suitable substrate for deposition active materiales in supercapacitors were considered. PANI/Pd/TiO2NTs electrodes with highly porous structures and good capacitive characteristics were prepared by electrodeposition of polyaniline on palladium nanoparticles loaded TiO2 nanotubes. The results illustrated that the specific capacitance of these electrodes was around 1060 Fg−1 in 1.0 M H2SO4 electrolyte as measured at a constant current of 2.0 Ag−1, whereas it was 210 Fg−1 for the PANI/TiO2NTs electrode. NiO-ZnO/TiO2NTs electrodes were synthesized by the electrodeposition of... 

    The effect of fractionality nature in differences between computer simulation and experimental results of a chaotic circuit

    , Article Central European Journal of Physics ; Volume 11, Issue 6 , 2013 , Pages 836-844 ; 18951082 (ISSN) Faraji, S ; Tavazoei, M. S ; Sharif University of Technology
    2013
    Abstract
    In practice, some differences are usually observed between computer simulation and experimental results of a chaotic circuit. In this paper, it is tried to obtain computer simulation results having more correlation with those obtained in practice by using more realistic models for chaotic circuits. This goal is achieved by considering the fractionality nature of electrical capacitors in the model of a chaotic circuit  

    Energy of decomposition and entanglement thermodynamics for T2-deformation

    , Article Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics ; Volume 839 , 2023 ; 03702693 (ISSN) Faraji Astaneh, A ; Allameh, K ; Sharif University of Technology
    Elsevier B.V  2023
    Abstract
    We have presented a set of laws of entanglement thermodynamics for TT¯-deformed CFTs and in general for T2-deformed field theories. In particular, the first law of this set, states that although we are dealing with a non-trivial deformed theory, the change of the entanglement entropy is simply translated to the change of the bending energy of the entangling surface. We interpret this energy as the energy of decomposition. Probing the whole spectrum of the deformed theory, a second law also results, which suggests an inequality that the first law is derived from its saturation limit. We explain that this second law guarantees the preservation of the unitarity bound. The thermodynamical form... 

    Simulation and Investigation of Mechanical Behavior of Non Pneumutic Tires

    , M.Sc. Thesis Sharif University of Technology Dana, Amir (Author) ; Arghavani Hadi, Jamal (Supervisor)
    Abstract
    Due to the relatively high freedom of selection of materials associated with a simple manufacturing method, a nonpneumatic tire (NPT) can be manufactured with low viscoelastic energy loss material. NPTs consisting of flexible spokes and the shear band are still at an early stage of research and development. An optimization study of NPTs’ geometry needs to be conducted, which is the objective of this thesis. Parametric studies and design of experiments (DOE) of an NPT are conducted with a hyper-viscoelastic finite element (FE) model to determine the effects of four design variables on rolling resistance, contact pressure and vertical deflection. Considering vehicle load carrying capacity and... 

    Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 178 , 2018 , Pages 124-132 ; 10111344 (ISSN) Faraji, M ; Mohaghegh, N ; Abedini, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A series of g-C3N4-SnO2/TiO2 nanotubes/Ti plates were fabricated via simple dipping of TiO2 nanotubes/Ti in a solution containing SnCl2 and g-C3N4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C3N4-SnO2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis... 

    Boundary conformal invariants and the conformal anomaly in five dimensions

    , Article Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics ; Volume 816 , 2021 ; 03702693 (ISSN) Faraji Astaneh, A ; Solodukhin, S. N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In odd dimensions the integrated conformal anomaly is entirely due to the boundary terms [1]. In this paper we present a detailed analysis of the anomaly in five dimensions. We give the complete list of the boundary conformal invariants that exist in five dimensions. Additionally to 8 invariants known before we find a new conformal invariant that contains the derivatives of the extrinsic curvature along the boundary. Then, for a conformal scalar field satisfying either the Dirichlet or the conformal invariant Robin boundary conditions we use the available general results for the heat kernel coefficient a5, compute the conformal anomaly and identify the corresponding values of all boundary... 

    Nickel-based nanosheets array as a binder free and highly efficient catalyst for electrochemical hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 82 , 2022 , Pages 34887-34897 ; 03603199 (ISSN) Faraji, H ; Hemmati, K ; Mirabbaszadeh, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hydrogen technology through water electrolyzer systems has attracted a great attention to overcome the energy crisis. So, rationally designed non-noble metal based-electrocatalysts with high activity and durability can lead to high performance water electrolyzer systems and high purity hydrogen generation. Herein, a facile two-step method: hydrothermal and electrodeposition, respectively, are developed to decorate highly porous three-dimensional binder-free structure NiFeO/NiO nanosheets array on Ni foam (NiFeO/NiO/NF) with robust adhesion as a high-performance electrode for Hydrogen Evolution Reaction (HER). The electrodeposition process applied after the initial hydrothermal process... 

    Fermions, boundaries, and conformal and chiral anomalies in d=3, 4 and 5 dimensions

    , Article Physical Review D ; Volume 108, Issue 8 , 2023 ; 24700010 (ISSN) Faraji Astaneh, A ; Solodukhin, S. N ; Sharif University of Technology
    American Physical Society  2023
    Abstract
    In the presence of boundaries, the quantum anomalies acquire additional boundary terms. In odd dimensions, the integrated conformal anomaly, for which the bulk contribution is known to be absent, is nontrivial due to the boundary terms. These terms became a subject of active study in the recent years. In the present paper, we continue our previous study [1,2] and compute explicitly the anomaly for fermions in dimensions d=3, 4 and 5. The calculation in dimension 5 is new. It contains both contributions of the gravitational field and the gauge fields to the anomaly. In dimensions d=3 and 4, we reproduce and clarify the derivation of the results available in the literature. Imposing the... 

    Investigation of Information Paradox in Charged Black Holes Using the Holography

    , M.Sc. Thesis Sharif University of Technology Shokouhi, Farhad (Author) ; Faraji Astaneh, Amin (Supervisor)
    Abstract
    Bonding gravity with Quantum mechanics has always been a challenging issue. So that, accomplishing a theory of quantum gravity is one of the most important research topics in High-Energy Physics.Information paradox in black holes is among such issues which connect quantum mechanics with gravity. Black holes as a natural solution of Einstein equations have a distinction, with other solutions, since there exists an event horizon that imparts space-time into two causally disconnected regions.According to Hawking’s calculations, black holes would evaporate over time by the thermal radiation. This resulting thermal radiation has less information than the initial collapsed matter in a pure state....