Loading...
Search for:
farvardin--m
0.255 seconds
Total 20467 records
The argus-II retinal prosthesis implantation; from the global to local successful experience
, Article Frontiers in Neuroscience ; Volume 12, Issue SEP , 2018 ; 16624548 (ISSN) ; Afarid, M ; Attarzadeh, A ; Johari, M. K ; Mehryar, M ; Nowroozzadeh, M. H ; Rahat, F ; Peyvandi, H ; Farvardin, R ; Nami, M ; Sharif University of Technology
2018
Abstract
Over the past few years, visual prostheses (namely, Argus II retinal implant) and gene therapy have obtained FDA approval in treating blindness resulting from retinitis pigmentosa. Compared to gene therapy; Argus II is less costly with a demonstrated favorable outcome, though the vision is yet artificial. To obtain better results, expectation counseling and preoperative retinal assessment are critical. The global experience with Argus II has enrolled no more than 300 cases so far. The first Argus II retinal prosthesis in Iran was successfully implanted in Shiraz (October 2017). To date, Argus II artificial retina is implanted in four patients in Iran. Beside successful surgery and...
Experimental and theoretical investigation of heat transfer in vortex combustion engines
, Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 376 HTD, Issue 1 , 2005 , Pages 319-326 ; 02725673 (ISSN); 0791842215 (ISBN); 9780791842218 (ISBN) ; Saidi, M. H ; Ghafourian, A ; Sharif University of Technology
2005
Abstract
Heat transfer phenomenon in a recently developed vortex engine has been surveyed. Cooler walls, better combustion performance and more stable relative to the other engines, make these engines very interesting. These advantages have been obtained by using a bidirectional swirl flow, containing a cool outer and a hot inner vortex, traveling upstream and downstream respectively. The most eminent benefit of these combustion chambers, having highly reduced wall temperature, is the result of convective heat release from the wall by the outer vortex. A thorough numerically and experimentally investigation has been performed on radiation and convection heat transfer to realize the exact heat...
Applied flight dynamics modeling and stability analysis of a nonlinear time-periodic mono-wing aerial vehicle
, Article Aerospace Science and Technology ; Volume 108 , 2021 ; 12709638 (ISSN) ; Banazadeh, A ; Sharif University of Technology
Elsevier Masson s.r.l
2021
Abstract
This paper presents fly-ability, trim-ability, stability, and control ability of a mono-wing aerial vehicle as an under-actuated multi-body system. A nonlinear mathematical model of this vehicle with translational and rotational movements is developed. Based on early simulations, a conceptual prototype of the mono-wing is initially designed and constructed. A comprehensive nonlinear simulation is then performed by modeling aerodynamic forces and moments using the Blade Element Momentum (BEM) theory. Modeling and simulation are validated against experimental data to satisfy research needs. Twenty-three efficient dynamic parameters of the mono-wing are studied in ninety-seven simulation...
On the inherent stabilization of a bio-inspired mono-wing rotorcraft
, Article Aerospace Science and Technology ; Volume 132 , 2023 ; 12709638 (ISSN) ; Banazadeh, A ; Sharif University of Technology
Elsevier Masson s.r.l
2023
Abstract
The intricate concept of inherent stabilization of a mono-wing aerial vehicle, as a Nonlinear Time-Periodic (NLTP) system is investigated in this research. Stability analysis has been performed based on the dynamic characteristics of the system by using the most appropriate approaches, including Floquet theory, averaging theory, and kinetic energy integration. To achieve stable flight performance, specifying the admissible range of the aerodynamic coefficients and system parameters has been proposed. Using Floquet analysis, the system has initially been linearized around the periodic orbit that was found by numerical techniques. The stability condition of the linear model has been studied by...
Design and synthesis of new family of ionic liquids based on 2-iminium-1,3-dithiolanes: A combined theoretical and experimental effort
, Article Journal of Molecular Structure ; Vol. 1056-1057, issue. 1 , January , 2014 , p. 56-62 ; Shakourian-Fard, M ; Farvardin, M. V ; Raeesi, M ; Hashemi, M. M ; Behzadi, H ; Sharif University of Technology
2014
Abstract
An efficient method for synthesis of 2-iminium-1,3-dithiolane as a new family of ionic liquids with reaction of dithiocarbamates with methyl triflouromethanesulfonate was described. Theoretical study on the synthesized ionic liquids was also performed by quantum chemistry calculation. Geometry optimization on the ion pairs was carried out with the B3LYP/6-311++G(d,p) level of theory. The interaction energies were calculated, and corrected by the basis set superposition error (BSSE) calculated by the counterpoise method. The results of natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses indicate that the interactions occur via hydrogen bonding between oxygen...
Coupled Trajectory and Attitude Control of an Exoatmospheric Interceptor
, M.Sc. Thesis Sharif University of Technology ; Nobahari, Hadi (Supervisor)
Abstract
In this thesis, coupled trajectory and attitude control of an exoatmospheric interceptor is investigated. The interceptor is considered to track and intercept orbital targets in its terminal phase using an infrared strapdown seeker. Attitude control system uses its thrusters in order to keep permanently the detector toward the target in both elevation and azimuth directions. Detector is attached to the body. Divert thrusters generate acceleration perpendicular to the longitudinal axis of the interceptor to correct the trajectory. It is assumed that the interceptor has mass asymmetries. Transltional and rotational dynamics are coupled. Therefore, in order to improve the performance of...
Stability Analysis and Control of Periodic Nonlinear Micro Air Vehicles
, M.Sc. Thesis Sharif University of Technology ; Banazadeh, Afshin (Supervisor)
Abstract
This research aims to identify dynamic behavior, determine stability properties, and choose an appropriate control method for nonlinear time-periodic (NLTP) systems by using the optimal design approach. The primary objective is to address the challenges associated with these systems, particularly in making them smarter and more autonomous, while acquiring the knowledge needed to overcome these challenges. In this respect, multi-body modeling and nonlinear simulation of a mono-wing, as a modern NLTP micro air vehicle, are initially developed. A trade study is performed in free-flight conditions based on sensitivity analysis of parameters such as initial conditions, geometry, and mass...
Probability of missed detection as a criterion for receiver placement in MIMO PCL
, Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
IEEE
2012
Abstract
Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar
An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation
, Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
2008
Abstract
SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity
Resource allocation for uav-enabled integrated sensing and communication (isac) via multi-objective optimization
, Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings ; Volume 2023-June , 2023 ; 15206149 (ISSN); 978-172816327-7 (ISBN) ; Naghsh, M. M ; Karbasi, M ; Nayebi, M. M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2023
Abstract
In this paper, we consider an integrated sensing and communication (ISAC) system with wireless power transfer (WPT) where an unmanned aerial vehicle (UAV)-based radar serves a group of energy-limited communication users in addition to its sensing functionality. In this architecture, the radar senses the environment in phase 1 (namely sensing phase) and mean-while, the communications users (nodes) harvest and store the energy from the radar transmit signal. The stored energy is then used for information transmission from the nodes to UAV in phase 2, i.e., uplink phase. Performance of the radar system depends on the transmit signal as well as the receive filter; the energy of the transmit...
MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak
, Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
Elsevier
2016
Abstract
One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function...
Detection-localization tradeoff in MIMO radars
, Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance...
Antenna placement and power allocation optimization in MIMO detection
, Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive...
Ambiguity function of MIMO radar with widely separated antennas
, Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas
Choosing the position of the receiver in a MISO passive radar system
, Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
2012
Abstract
By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only...
Adaptive filtering techniques in passive radar
, Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2013
Abstract
One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared
Ambiguity function based receiver placement in multi-site radar
, Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite...
Improving MIMO radar's performance through receivers' positioning
, Article IET Signal Processing ; Volume 11, Issue 5 , 2017 , Pages 622-630 ; 17519675 (ISSN) ; Radmard, M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
Institution of Engineering and Technology
2017
Abstract
By employing the MIMO (multiple-input-multiple-output) technology in radar, some new problems emerged, that, in order to benefit the MIMO gains in radar, it was necessary to solve them suitably. One of such obstacles is determining the positions of receive antennas in a MIMO radar system with widely separated antennas (WS MIMO radar), since it is shown that the antennas' positions affect the whole system's performance considerably. In this study, a proper receivers' positioning procedure is proposed. To do this end, four criteria are developed based on the proposed MIMO detector and the MIMO ambiguity function. The simulations verify that the proposed positioning procedure improves the...
Silylation of hydroxy groups with HMDS under microwave irradiation and solvent-free conditions
, Article Phosphorus, Sulfur and Silicon and Related Elements ; Volume 177, Issue 2 , 2002 , Pages 289-292 ; 10426507 (ISSN) ; Saidi, M. R ; Bolourtchian, M ; Heravi, M. M ; Sharif University of Technology
2002
Abstract
Phenols and alcohols are silylated with hexamethyldisilazane (HMDS) under microwave irradiation in solvent-free condition in good to excellent yields
Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory
, Article Acta Mechanica ; Vol. 225, Issue 6 , June , 2014 , pp. 1523-1535 ; Online ISSN: 1619-6937 ; Rastgoo, A ; Ahmadian, M. T ; Mashhadi, M. M ; Sharif University of Technology
2014
Abstract
Modified couple stress theory is a size-dependent theorem capturing the micro/nanoscale effects influencing the mechanical behaviors of the micro- and nanostructures. In this paper, it is applied to investigate the nonlinear vibration of carbon nanotubes under step DC voltage. The vibration, natural frequencies and dynamic pull-in characteristics of the carbon nanotubes are studied in detail. Moreover, the effects of various boundary conditions and geometries are scrutinized on the dynamic characteristics. The results reveal that application of this theory leads to the higher values of the natural frequencies and dynamic pull-in voltages