Loading...
Search for: farzan--yasaman
0.062 seconds

    Cosmic Neutrinos at Neutrino Telescopes CP-violation, Source Properties and Beyond the Standard Model Physics

    , Ph.D. Dissertation Sharif University of Technology Esmaili Taklimi, Arman (Author) ; Farzan, Yasaman (Supervisor)
    Abstract
    In this thesis, we studied the oscillation of neutrino flavors and the measurement of mixing parameters through the detection of cosmic neutrinos at neutrino telescopes. Most of the astrophysical explosions predict the emission of neutrino flux and kilometer-scale detectors are under construction for the observation of these neutrinos. Detection of astrophysical neutrinos opens a new window to understand the neutrino properties and also the properties of astrophysical sources.In this thesis first we review the phenomenology of neutrino flavor oscillation and characteristics of neutrino mass matrix. By introducing a new class of invariants (under general transformation of lepton fields bases)... 

    Particles in the early Universe: Interface of Cosmology and Particles Massive Neutrinos and Cosmology

    , M.Sc. Thesis Sharif University of Technology Rezaie, Mehdi (Author) ; Golshani, Mehdi (Supervisor) ; Farzan, Yasaman (Supervisor)
    Abstract
    Neutrino flavor oscillations are clear evidence of massive neutrinos. It has been for more than a decade that neutrino physics became one of active topics in the field of particle physics and various experiments started studying the flavor oscillation of neutrinos. Unfortunately, experiments studying the flavor oscillations are only sensitive to the mass square difference, and they are incapable of providing more information about the absolute mass scale of neutrinos. Additionally, sterile neutrinos having non-standard interactions are under vast investigations and studies. Determination of neutrino masses and their effective number is among the most challenging problems by which... 

    Performance evaluation of hybrid transfer switches in grounded and ungrounded medium-voltage electrical systems

    , Article CIGRE/IEEE PES International Symposium Quality and Security of Electric Power Delivery Systems, CIGRE/PES 2003, 8 October 2003 through 10 October 2003 ; 2003 , Pages 91-96 ; 2858730156 (ISBN); 9782858730155 (ISBN) Yasaman, H ; Mokhtari, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2003
    Abstract
    Application of a fast hybrid transfer switch (HTS) as a suitable tool for protection of sensitive electrical loads against power quality problems has attracted much attentions these days. In this paper, methods for desired control of a HTS which consists of a fast fault-detection method and a suitable firing and transfer strategy are proposed. Simulation results of a HTS under various operating conditions for two types of medium-voltage electrical systems, i.e. grounded (star connection) and ungrounded (delta connection) systems, with respect to total transfer time are presented. The results show the capability of the HTS and the proposed control methods in fast transferring of sensitive... 

    VDM: A model for vector dark matter

    , Article Journal of Cosmology and Astroparticle Physics ; Volume 2012, Issue 10 , 2012 ; 14757516 (ISSN) Farzan, Y ; Rezaeiakbarieh, A ; Sharif University of Technology
    IOP  2012
    Abstract
    We construct a model based on a new U(1) X gauge symmetry and a discrete Z 2 symmetry under which the new gauge boson is odd. The model contains new complex scalars which carry U(1) X charge but are singlets of the Standard Model. The U(1) X symmetry is spontaneously broken but the Z 2 symmetry is maintained, making the new gauge boson a dark matter candidate. In the minimal version there is only one complex scalar field but by extending the number of scalars to two, the model will enjoy rich phenomenology which comes in various phases. In one phase, CP is spontaneously broken. In the other phase, an accidental Z 2 symmetry appears which makes one of the scalars stable and therefore a dark... 

    Numerical Investigation of Various Parameters Influence in Atrium Efficiency Improvements for Building’s Natural Ventilation

    , M.Sc. Thesis Sharif University of Technology Farzan, Shahin (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    In order to improve the efficiency of atriums, effective parameters in ventilation and acceleration of airflow are numerous. Nevertheless, parameters such as shape and height of atrium, geometry of the inlet and outlets, opening areas and the presence of heat sources in each store play a vital role. In structures higher than one floor, there is no significant airflow in the upper floors and the ventilation of atrium is unpleasant for residents. Air movement in the building is done by buoyancy-driven force and hot air upward movement due to pressure differences.This study attempts to improve the natural ventilation performance with changing mentioned parameters. So for this purpose, 3D... 

    Dynamics of Two Coupled Neurons of Different Types of Excitability

    , Ph.D. Dissertation Sharif University of Technology Yasaman, Somayeh (Author) ; Razvan, Mohammad Reza (Supervisor)
    Abstract
    Excitability is one of the most important characteristics of a neuron. In 1948, Hodgkin identified three different types of excitability of neurons. Excitability an all of its types can be observed in Hodgkin-Huxley model of neuronal dynamics (H-H model) as a four-dimensional system of differential equations and in at least two dimensional reductions of H-H type models. By applying the theory of dynamical systems (e.g. bifurcation theory), one can give a mathematical definition of excitability.Excitability of the neuron is equivalent to that the neuronal model is near a bifurcation through which the state of the system approaches to a stable limit cycle. In this thesis, a two-dimensional... 

    Decaying vector dark matter as an explanation for the 3.5 keV line from galaxy clusters

    , Article Journal of Cosmology and Astroparticle Physics ; Vol. 2014, issue. 11 , 2014 ; ISSN: 14757516 Farzan, Y ; Akbarieh, A. R ; Sharif University of Technology
    2014
    Abstract
    We present a Vector Dark Matter (VDM) model that explains the 3.5 keV line recently observed in the XMM-Newton observatory data from galaxy clusters. In this model, dark matter is composed of two vector bosons, V and V', which couple to the photon through an effective generalized Chern-Simons coupling, gV. V' is slightly heavier than V with a mass splitting mV' - mV 3.5 keV. The decay of V' to V and a photon gives rise to the 3.5 keV line. The production of V and V' takes place in the early universe within the freeze-in framework through the effective gV coupling when mV' < T < Λ, Λ being the cut-off above which the effective gV coupling is not valid. We introduce a high energy model that... 

    Natural explanation for 130 GeV photon line within vector boson dark matter model

    , Article Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics ; Volume 724, Issue 1-3 , 2013 , Pages 84-87 ; 03702693 (ISSN) Farzan, Y ; Akbarieh, A. R ; Sharif University of Technology
    2013
    Abstract
    We present a dark matter model for explaining the observed 130 GeV photon line from the galaxy center. The dark matter candidate is a vector boson of mass mV with a dimensionless coupling to the photon and Z boson. The model predicts a double line photon spectrum at energies equal to mV and mV(1-mZ2/4mV2) originating from the dark matter annihilation. The same coupling leads to a mono-photon plus missing energy signal at the LHC. The entire perturbative parameter space can be probed by the 14 TeV LHC run. The model has also a good prospect of being probed by direct dark matter searches as well as the measurement of the rates of h→γγ and h→Zγ at the LHC  

    Global analysis of a delay SVEIR epidemiological model

    , Article Iranian Journal of Science and Technology, Transaction A: Science ; Volume 37, Issue A4 , 2013 , Pages 483-489 ; 10286276 (ISSN) Farajzadeh Tehrani, N ; Razvan, M. R ; Yasaman, S ; Sharif University of Technology
    2013
    Abstract
    This paper is concerned with global analysis of a delay SVEIR epidemiological model in a population of varying size. By using Lyapunov stability method and LaSalle's invariance principle for delay systems, we prove that when there is no endemic equilibrium, the disease free equilibrium is globally asymptotically stable, otherwise the endemic equilibrium is globally stable  

    Efficient Multicasting in Cognitive Wireless Sensor Networks

    , M.Sc. Thesis Sharif University of Technology Farzan Heydari, Mohammad (Author) ; Movaghar Rahimabadi, Ali (Supervisor)
    Abstract
    Today with growth of wireless communications and progress of small and cheap sensors which have capability of communication and calculation, wireless sensor networks are important and useful topic. But due to energy restrictions, efficient use of resources and increasing network lifetime, have been considered as key factors in network design. In this regard, using efficient multicast routing in energy consumption, for an efficient data transmission to specific number of nodes instead of all nodes code updates, information requests, task assignments and etc., is necessary.On the other hand these networks use unlicensed spectrum and suffer from collision due to congestion caused by other...