Loading...
Search for: ferasat--ali
0.166 seconds

    Aerodynamic Design of Axial Compressor Blade of The Gas Turbine

    , M.Sc. Thesis Sharif University of Technology Ferasat, Ali (Author) ; Hajilouy Benisi, Ali (Supervisor)
    Abstract
    Improving compressor performance and arriving at better conditions has always been considered by researchers and industrialists. However axial compressor design process is time consuming, very costly, and involves uncertainties and iterations such that sometimes the preset targets are not achieved. Therefore it is required to be able to perform preliminary design and specify the compressor geometry and blade specifications and predict the performance characteristics with a fast, cheap method with required accuracy suitable for this step before detailed design and manufacture. Also some design methods need a primary geometry that is generated by these methods.In this work, towards achieving... 

    Microstructural modification of Al–30Si–5Fe Alloy using a combination of rapid solidification and thixoforming processes

    , Article Metallography, Microstructure, and Analysis ; Volume 5, Issue 3 , 2016 , Pages 217-228 ; 21929262 (ISSN) Shafizadeh, M ; Aashuri, H ; Ferasat, K ; Nikzad, S ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    It is commonly known that the properties of materials are strongly related to their microstructure. This paper introduces a method that is a combination of rapid solidification (melt spinning) and semisolid forming (thixoforming) processes, which are used to refine the microstructure of “as-cast” Al–30Si–5Fe alloy and improve its mechanical properties. Produced Al–30Si–5Fe ribbons by melt-spinning process, were pulverized and subsequently consolidated at 300 °C in argon atmosphere. Prepared specimens were thixoformed at temperatures ranging from 580 to 700 °C in various holding times. Some samples were also directly thixoformed from as-cast condition. Microstructure of the as-cast, meltspun,... 

    Mechanical properties of Al–30Si–5Fe alloy using combination of rapid solidification and thixoforming processes

    , Article Metallography, Microstructure, and Analysis ; Volume 6, Issue 6 , 2017 , Pages 502-511 ; 21929262 (ISSN) Shafizadeh, M ; Aashuri, H ; Nikzad, S ; Ferasat, K ; Sharif University of Technology
    2017
    Abstract
    In this study, a combination of rapid solidification (melt-spinning) and semisolid forming (thixoforming) processes was used to refine the coarse microstructure of “as-cast” Al–30Si–5Fe alloy and improve its mechanical properties. Al–30Si–5Fe ribbons produced by the melt-spinning process were pulverized and subsequently consolidated at 300 °C in an argon atmosphere. Prepared specimens were thixoformed at temperatures ranging from 580 to 700 °C for various holding times. Some cast samples were also directly thixoformed as reference. In all thixoformed samples, microstructures were modified and needle-like intermetallic compounds as well as silicon particles in the as-cast part were changed... 

    Semisolid Stir Joining of As-Cast Silicon-Aluminum Bronze

    , M.Sc. Thesis Sharif University of Technology Ferasat, Keyvan (Author) ; Kokabi, Amir Hossein (Supervisor) ; Ashuri, Hossein (Supervisor)
    Abstract
    Aluminum Bronzes have many applications in marine environments. These alloys suffer from both hot cracking and cold cracking. In order to overcome the hot cracking and cold cracking, Semisolid Stir Joining method and a proper thermal cycle was used respectively. Effects of temperature, stirring rate, and tool type were investigated in Semisolid Stir joining method. In this method, butt joint design was used in order to place specimens, and the specimens were heated up to specific temperatures (920, 925, 930°C). A stirrer (Cylindrical and Grooved tool) with three rotational speeds (800, 1200, 1600 RPM) was introduced into the stir weld seam. Welded specimens were cooled to the 900°C... 

    The Effect of Temperature and Rotational Speed on Structure and Mechanical Properties of Cast Cu Base Alloy (Cu-Al-Si-Fe) Welded by Semisolid Stir Joining Method

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 46, Issue 12 , 2015 , Pages 5782-5788 ; 10735623 (ISSN) Ferasat, K ; Aashuri, H ; Kokabi, A. H ; Shafizadeh, M ; Nikzad, S ; Sharif University of Technology
    2015
    Abstract
    Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and... 

    Newly developed technique to eliminate hot cracking with electromagnetic vibration for joining of 2024 aluminum alloy

    , Article Metallography, Microstructure, and Analysis ; Volume 5, Issue 1 , 2016 , Pages 7-15 ; 21929262 (ISSN) Nikzad, S ; Ashuri, H ; Kokabi, A. H ; Shafizadeh, M ; Ferasat, K ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this study, the effect of electromagnetic vibration on joining of aluminum alloy 2024 was investigated. Simultaneously applying a static magnetic field and alternating electrical current passing through a conductor produced electromagnetic vibration. Joining was accomplished using constant electric current (60 A) and the magnetic flux of 75, 110, and 145 mT in the presence of argon gas. After joining, samples were cooled first by argon gas as a shielding gas and then by water. The microstructure and mechanical properties of the welded samples were studied for different electromagnetic vibrations. The optimum microstructure and mechanical properties were obtained when applied... 

    Technical English for mechanical engineers

    , Book Alemi, Minoo ; Meghdari,Ali
    Sharif University Press  2014
    Abstract
    Local educational institutions produce in-house English for Specific Purpose (ESP) materials according to the curriculum policies designated and developed by the Ministry of Higher Education In Iran. To this end, this book aims to be used in the Iranian setting at the tertiary level for undergraduate students majoring in Mechanical Engineering. Moreover, the style of English usage in this ESP textbook is American.
    Regarding the content of the textbook, it has both thematic organizations in which the topics are relevant and includes sufficient treatment of the target language areas necessary for the students. The principle organizing approach of this textbook is theme-based. In addition,... 

    Feedback control of the neuro-musculoskeletal system in a forward dynamics simulation of stair locomotion [electronic resource]

    , Article Proc. of IMechE Part H: Journal of Engineering in Medicine ; 2009, Vol. 223, No. 6, pp. 663-675 Journal of NeuroEngineering and Rehabilitation ; Volume 11, Issue 1, 30 April 2014, Article number 78 Selk Ghafari, A. (Ali) ; Meghdari, Ali ; Vossough, Gholam Reza ; Sharif University of Technology
    Abstract
    The aim of this study is to employ feedback control loops to provide a stable forward dynamics simulation of human movement under repeated position constraint conditions in the environment, particularly during stair climbing. A ten-degrees-of-freedom skeletal model containing 18 Hill-type musculotendon actuators per leg was employed to simulate the model in the sagittal plane. The postural tracking and obstacle avoidance were provided by the proportional—integral—derivative controller according to the modulation of the time rate change of the joint kinematics. The stability of the model was maintained by controlling the velocity of the body's centre of mass according to the desired centre of... 

    Design and Construction of a Soft Actuated Exoskeleton for Hand Rehabilitation of Stroke Patients

    , M.Sc. Thesis Sharif University of Technology Razavi Zadehgan, Ali Akbar (Author) ; Ghafari, Ali (Supervisor) ; Meghdari, Ali (Supervisor)
    Abstract
    The main goal of this thesis is the design and development of a rehabilitation device for helping patients “to improve blood circulation” & retain and recover their abilities if possible that were lost during the stroke or a accident like that (my research in karaj/iran shows that it is possible by just movement of the specific body part). The focus is on hand in this thesis because Injuries to the hand are common and can be very debilitating since our hands are our primary means for interacting with our world. For rehabilitation in case of human hand there are several practices that should be done for patients either in home or in a rehabilitation center, time and money that is supposed to... 

    Silica chloride/wet SiO2 as a novel heterogeneous system for the deprotection of acetals under mild conditions [electronic resource]

    , Article Phosphorus, Sulfur, and Silicon and the Related Elements ; Volume 178:2667-2670, Issue 12, 2003 Mirjalili, B. F. (BiBi Fatemeh) ; Pourjavadi, Ali ; Zolfigol, Mohammad Ali ; Bamoniri, Abdolhamid
    Abstract
    A combination of silica chloride and wet SiO2 was used as an effective deacetalizating agent for the conversion of acetals to their corresponding carbonyl derivatives under mild and heterogeneous condition  

    Earthquake Branch

    , M.Sc. Thesis Sharif University of Technology Bagher Shemirani, Ali Reza (Author) ; Bakhshi, Ali (Supervisor)
    Abstract
    In the past few decades, shaking tables are widely used to evaluate system response of structures under seismic excitations. These devices are used without any fundamental research performed on a shaking table system as an entity model. In most of these studies for simplicity, it is assumed that there exist no considerable vibration and displacement around the shaking tables, and no attention is paid to the peripheral substances such as soil settled under the foundation.
    In this thesis, result of ambient vibration test on shaking table system (solid deck, concrete foundation and soil layer) has been presented. Precise sensors known as low frequency and high accuracy accelerometers have... 

    Selective synthesis of conjugated enynes from α-arylalkynols using LiCl-Acidic Al2O3 under solvent-free conditions [electronic resource]

    , Article Journal of Chemical Research ; Volume 2002, Number 8, 1 August 2002, pp. 378-380(3) Pourjavadi, A. (Ali) ; Bagheri Marandi, Gholam
    Abstract
    Free Content Selective synthesis of conjugated enynes from α-arylalkynols using LiCl-Acidic Al2O3 under solvent-free conditions  

    Selective preparation of fluorescent 1,8-naphthalimides using acidic alumina under microwave irradiation [electronic resource]

    , Article Journal of Chemical Research ; 01/2001; 2001(11):485-487 Pourjavadi, A. (Ali) ; Bagheri Marandi, Gholam
    Abstract
    7H-benzimidazo[2,1-a]benz[de]isoquinolin-7-one compounds were prepared in a selective manner by reaction between o-phenylenediamines and appropriate 1,8-naphthalenedicarboxylic anhydrides using acidic alumina under microwave irradiation  

    Comparison between Performance of Stone Columns and RAPs from the Bearing Capacity and Settlement Reduction Viewpoints

    , M.Sc. Thesis Sharif University of Technology Golestani Dariani, Ali Akbar (Author) ; Pak, Ali (Supervisor)
    Abstract
    Out of several ground improvement techniques available, stone columns have been widely used. This technique has been successfully applied to increase the bearing capacity and to reduce the settlement for foundation of structures like liquid storage tanks, earthen embankments, raft foundations, etc., where a relatively large settlement is permissible. This technique has, generally, been proven successful in increasing the stiffness of weak soils, upgrading their safe bearing capacity, and reducing their total and differential settlements, as well as speeding up their consolidation process. The beneficial effects of stone column installation in weak deposits is manifested in the form of... 

    Performance of Partially Filled Mini-Channels with Porous Media

    , M.Sc. Thesis Sharif University of Technology Azimi, Adel (Author) ; Nouri, Ali (Supervisor) ; Moosavi, Ali (Co-Advisor)
    Abstract
    Laminar forced convection flow through a channel partially filled with a porous material was numerically studied in this thesis. The Navier-Stokes and Brinkman-Forchheimer equations were used to model the fluid flow in the free and porous regions, respectively. Coupling of the pressure and velocity fields was resolved using the SIMPLEC algorithm. The local thermal equilibrium was adopted in the energy equation. The effects of the thermal conductivity ratio, Darcy number, porosity, Reynolds number and height of the porous insert on velocity and temperature field were investigated. The results show that the flow behavior and its associated heat transfer are susceptible to the variation of the... 

    Improvement of Stability of Haptic Force Interaction with Virtual Environments Using a Haptic Interface with a Separate Tracker

    , M.Sc. Thesis Sharif University of Technology Mashayekhi, Ahmad (Author) ; Meghdari, Ali (Supervisor) ; Nahvi, Ali (Supervisor)
    Abstract
    In the present study, a new version of haptic devices is presented in which user’s hand is in contact with the device just while collision with virtual surface. In this system, the position of user’s finger can be traced by using a camera and the haptic device follows user’s finger at the distance of about two centimeters. While the haptic device approaches to the virtual surface, gradually reduces its speed and stops about two centimeters distant of virtual plane. Then user’s hand collides with the haptic device which is static. Greater fidelity, transparency, more stability and also no need to large actuators are of the advantages of this system. In this project, first we present a new... 

    Simulation of the Biomolecule Imaging and Manipulation Via AFM by Molecular Dynamics Method

    , M.Sc. Thesis Sharif University of Technology Kheiroddin, Mohsen (Author) ; Meghdari, Ali (Supervisor) ; Moosavi, Ali (Supervisor)
    Abstract
    In this thesis we try to find optimized parameters for imaging and manipulation of a biosample with AFM. For this we have prepared a numerous Molecular Dynamics simulation and find some reliable result. So, first we have focused on imaging process in Non contact mode (the less harmful mode). Then we headed into the manipulation process. The main problem about manipulating a biosample is the environment. In imaging section, the process of imaging a biomolecule by AFM is modeled using molecular dynamics simulations. Since the large normal force exerted by the tip on the biosample in contact and tapping modes may damage the sample structure and produce irreversible deformation, the non-contact... 

    Characterzing Variation of Small Strain Shear Modulus of Unsaturated Sand During Hydraulic Hysteresis with Bender Elements

    , M.Sc. Thesis Sharif University of Technology Shahbazan, Parisa (Author) ; Pak, Ali (Supervisor) ; Khosravi, Ali (Supervisor)
    Abstract
    Results of previous studies on silt and clay indicated that variations in the small strain shear modulus, Gmax, during drying had a non-linear increasing trend with matric suction with greater values upon wetting. However, due to different material properties and inter-particle forces, different behaviour in Gmax is expected for sand. Although considerable research has been devoted in recent years to characterize the behaviour of Gmax of sand during drying, rather less attention has been paid to the effect of hydraulic hysteresis on Gmax and its variations during wetting. In the study presented herein, an effort was made to characterize the variation of Gmax for specimens of sand during... 

    Sequential Competitive Facility Location In Continuous Geometric Space

    , M.Sc. Thesis Sharif University of Technology Lavasani, Ali Mohammad (Author) ; Abam, Mohammad Ali (Supervisor)
    Abstract
    Abstract The problem of competetive facility location can be defined as follows: There are a number of customers in the form of points in space, and two players arrange a number of facilities in the form of points in space, given some limitations, respectively. Each customer’s connection to each facility has a cost for the customer and an advantage for the facility, and each customer wants to be connected to at most one of the facilities which has the lowest cost for him. The goal is to find the strategy of placing the facilities and determining the cost which the facility receives from the customer, in such a way that the player’s profit is maximised.In this thesis, we first sought to... 

    Distributed Verifiable Computing: Algorithms and Analysis

    , M.Sc. Thesis Sharif University of Technology Rahimi, Ali (Author) ; Maddah Ali, Mohammad Ali (Supervisor)
    Abstract
    Zero knowledge proofs allow a person (prover) to convince another person (verifier) that he has performed a specific computation on a secret data correctly, and has obtained a true answer, without having to disclose the secret data. QAP (Quadratic Arithmetic Program) based zkSNARKs (zero knowledge Succinct Non-interactive Argument of Knowledge) are a type of zero knowledge proof. They have several properties that make them attractive in practice, e.g. verifier's work is very easy. So they are used in many areas such as Blockchain and cloud computing. But yet prover's work in QAP based zkSNARKs is heavy, therefore, it may not be possible for a prover with limited processing resource to run...