Loading...
Search for: fooladgar--f
0.088 seconds

    Learning strengths and weaknesses of classifiers for RGB-D semantic segmentation

    , Article 9th Iranian Conference on Machine Vision and Image Processing, 18 November 2015 through 19 November 2015 ; Volume 2016-February , 2015 , Pages 176-179 ; 21666776 (ISSN) ; 9781467385398 (ISBN) Fooladgar, F ; Kasaei, S ; Sharif University of Technology
    IEEE Computer Society  2015
    Abstract
    3D scene understanding is an open challenge in the field of computer vision. Most of the focus is on 2D methods in which the semantic labeling of each RGB pixel is considered. But, in this paper, the 3D semantic labeling of RGB-D images is considered. In the proposed method, to extract some meaningful features, the superpixel generation algorithm is applied to the RGB image to segment it into a set of disjoint pixels. After that, the set of three powerful classifiers are utilized to semantically label each superpixel. In the proposed method, the probability outputs of these classifiers are concatenated as the novel feature vector for each superpixel. Consequently, to analyze the strengths... 

    Semantic segmentation of RGB-D images using 3D and local neighbouring features

    , Article 2015 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2015, 23 November 2015 through 25 November 2015 ; 2015 ; 9781467367950 (ISBN) Fooladgar, F ; Kasaei, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    3D scene understanding is one of the most important problems in the field of computer vision. Although, in the past decades, considerable attention has been devoted on the 2D scene understanding problem, now with the development of the depth sensors (like Microsoft Kinect), the 3D scene understanding has become a very challenging task. Traditionally, the scene understanding problem was considered as the semantic labeling of each image pixel. Semantic labeling of RGB-D images has not attained a comparable success, as the RGB semantic labeling, due to the lack of a challenging dataset. With the introduction of an RGB-D dataset, called NYU-V2, it became possible to propose a novel method to... 

    3M2RNet: Multi-modal multi-resolution refinement network for semantic segmentation

    , Article Computer Vision Conference, CVC 2019, 25 April 2019 through 26 April 2019 ; Volume 944 , 2020 , Pages 544-557 Fooladgar, F ; Kasaei, S ; Sharif University of Technology
    Springer Verlag  2020
    Abstract
    One of the most important steps towards 3D scene understanding is the semantic segmentation of images. The 3D scene understanding is considered as the crucial requirement in computer vision and robotic applications. With the availability of RGB-D cameras, it is desired to improve the accuracy of the scene understanding process by exploiting the depth along with appearance features. One of the main problems in RGB-D semantic segmentation is how to fuse or combine these two modalities to achieve more advantages of the common and specific features of each modality. Recently, the methods that encounter deep convolutional neural networks have reached the state-of-the-art results in dense... 

    Lightweight residual densely connected convolutional neural network

    , Article Multimedia Tools and Applications ; Volume 79, Issue 35-36 , 2020 , Pages 25571-25588 Fooladgar, F ; Kasaei, S ; Sharif University of Technology
    Springer  2020
    Abstract
    Extremely efficient convolutional neural network architectures are one of the most important requirements for limited-resource devices (such as embedded and mobile devices). The computing power and memory size are two important constraints of these devices. Recently, some architectures have been proposed to overcome these limitations by considering specific hardware-software equipment. In this paper, the lightweight residual densely connected blocks are proposed to guaranty the deep supervision, efficient gradient flow, and feature reuse abilities of convolutional neural network. The proposed method decreases the cost of training and inference processes without using any special... 

    A survey on indoor RGB-D semantic segmentation: from hand-crafted features to deep convolutional neural networks

    , Article Multimedia Tools and Applications ; Volume 79, Issue 7-8 , 2020 , Pages 4499-4524 Fooladgar, F ; Kasaei, S ; Sharif University of Technology
    Springer  2020
    Abstract
    Semantic segmentation is one of the most important tasks in the field of computer vision. It is the main step towards scene understanding. With the advent of RGB-Depth sensors, such as Microsoft Kinect, nowadays RGB-Depth images are easily available. This has changed the landscape of some tasks such as semantic segmentation. As the depth images are independent of illumination, the combination of depth and RGB images can improve the quality of semantic labeling. The related research has been divided into two main categories, based on the usage of hand-crafted features and deep learning. Although the state-of-the-art results are mainly achieved by deep learning methods, traditional methods... 

    Supervised Semantic Segmentation of RGB-Depth Images

    , Ph.D. Dissertation Sharif University of Technology Fooladgar, Fahimeh (Author) ; Kasaei, Shohreh (Supervisor)
    Abstract
    The labeling process is one of the most important tasks in the field of computer vision. The dense labeling problem is the main step towards 2D and 3D scene understanding. The main goal of dense labeling is to label all pixels of images that are known as a semantic segmentation of images in the related literature. Although the state-of-the-art results are mainly achieved by deep learning methods, traditional methods had also been at the center of attention for some years. In the last decades, convolutional neural networks have changed the landscape of visual recognition tasks such as labeling and semantic segmentation. The most important issues in deep learning models are the hardware and... 

    Geometrical analysis of localization error in stereo vision systems

    , Article IEEE Sensors Journal ; Volume 13, Issue 11 , 2013 , Pages 4236-4246 ; 1530437X (ISSN) Fooladgar, F ; Samavi, S ; Soroushmehr, S. M. R ; Shirani, S ; Sharif University of Technology
    2013
    Abstract
    Determining an object location in a specific region is an important task in many machine vision applications. Different parameters affect the accuracy of the localization process. The quantization process in charge-coupled device of a camera is one of the sources of error that causes estimation rather than identifying the exact position of the observed object. A cluster of points, in the field of view of a camera are mapped into a pixel. These points form an uncertainty region. In this paper, we present a geometrical model to analyze the volume of this uncertainty region as a criterion for object localization error. The proposed approach models the field of view of each pixel as an oblique... 

    Effect of heating profile on desorption curve in temperature programmed desorption analysis: Case study of acid sites distribution of SAPO-34

    , Article Journal of Porous Materials ; Volume 16, Issue 5 , 2009 , Pages 599-603 ; 13802224 (ISSN) Izadbakhsh, A ; Farhadi, F ; Khorasheh, F ; Yan, Z. F ; Sharif University of Technology
    2009
    Abstract
    Comparison of the traditional linear heating method of TPD with an original stepwise heating scheme was reported for the first time. Stepwise heating TPD was carried out by keeping the temperature constant as soon as ammonia desorption signal rises until the signal returns to the baseline. More ammonia desorption peaks on a SAPO-34 catalyst were identified using TPD with stepwise heating. The effect of temperature ramp on desorption peak broadening in TPD curve was also addressed. The more distinct ammonia desorption peaks in stepwise TPD indicates that ammonia adsorbs in about five or six different ways on SAPO-34, and attribution of different adsorptions may be explained considering some... 

    Theoretical and experimental study of cascade solar stills

    , Article Solar Energy ; Volume 90 , April , 2013 , Pages 205-211 ; 0038092X (ISSN) Ziabari, F. B ; Sharak, A. Z ; Moghadam, H ; Tabrizi, F. F ; Sharif University of Technology
    2013
    Abstract
    Most part of Iran is dominated by arid and semi-arid areas due to low annual rainfall. The need for production of fresh water from brackish water is considerably high, especially in dry regions. In this study 1 month daily-based experimental data from a solar still site has been reported. The technical and operational problems of this site which finally contributed to the total cease of the site are described. Then a detailed analysis is investigated on progress of a prototype which constructed in order to solve the site's problems. The results of 1 month of experimental data of the final design showed that the last prototype could be used to solve the current problems of the site. The... 

    Application of a continuous kinetic model for the hydrocracking of vacuum gas oil

    , Article Petroleum Science and Technology ; Vol. 32, Issue. 18 , 2014 , Pages 2245-2252 ; ISSN: 10916466 Arefi, A ; Khorasheh, F ; Farhadi, F ; Sharif University of Technology
    2014
    Abstract
    Hydrocracking is one of the most versatile petroleum refining processes for production of valuable products including gasoline, gas oil, and jet fuel. In this paper, a five-parameter continuous lumping model was used for kinetic modeling of hydrocracking of vacuum gas oil (VGO). The model parameters were estimated from industrial data obtained from a fixed bed reactor operating at an average temperature of 400°C and residence time of 0.3 h. Product distributions were obtained in terms of the weight fraction of various boiling point cuts. The model parameters were estimated using the Nelder-Mead optimization procedure and were correlated with temperature. Comparison of experimental and... 

    An improved methodology for design of custom-made hip prostheses to be fabricated using additive manufacturing technologies

    , Article Rapid Prototyping Journal ; Volume 18, Issue 5 , 2012 , Pages 389-400 ; 13552546 (ISSN) Rahmati, S ; Abbaszadeh, F ; Farahmand, F ; Sharif University of Technology
    Emerald  2012
    Abstract
    Purpose - The purpose of this paper is to present an improved methodology for design of custom-made hip prostheses, through integration of advanced image processing, computer aided design (CAD) and additive manufacturing (AM) technologies. Design/methodology/approach - The proposed methodology for design of custom-made hip prostheses is based on an independent design criterion for each of the intra-medullary and extra-medullary portions of the prosthesis. The intra-medullar part of the prosthesis is designed using a more accurate and detailed description of the 3D geometry of the femoral intra-medullary cavity, including the septum calcar ridge, so that an improved fill and fit performance... 

    Evaluation and enhancing of operational performance and training objective in accordance with Line Operations Safety Audit (LOSA)

    , Article International Air Safety Seminar Proceedings, 1 November 2011 through 3 November 2011 ; November , 2011 , Pages 78-99 ; 02705176 (ISSN) ; 9781618393975 (ISBN) Khoshkhoo, R ; Goodarzi, F ; Sharafbafi, F ; Sharif University of Technology
    2011

    Real-time impulse noise suppression from images using an efficient weighted-average filtering

    , Article IEEE Signal Processing Letters ; Volume 22, Issue 8 , 2015 , Pages 1050-1054 ; 10709908 (ISSN) Hosseini, H ; Hessar, F ; Marvasti, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    In this letter, we propose a method for real-time high density impulse noise suppression from images. In our method, we first apply an impulse detector to identify the corrupted pixels and then employ an innovative weighted-average filter to restore them. The filter takes the nearest neighboring interpolated image as the initial image and computes the weights according to the relative positions of the corrupted and uncorrupted pixels. Experimental results show that the proposed method outperforms the best existing methods in both PSNR measure and visual quality and is quite suitable for real-time applications  

    Kinetic modeling of pyrolysis of scrap tires

    , Article Journal of Analytical and Applied Pyrolysis ; Volume 84, Issue 2 , 2009 , Pages 157-164 ; 01652370 (ISSN) Mazloom, G ; Farhadi, F ; Khorasheh, F ; Sharif University of Technology
    2009
    Abstract
    The disposal of used tires is a major environmental problem. With increasing interest on recovery of wastes, pyrolysis is considered as an alternative process for recovering some of the value in scrap tires. An accurate kinetic model is required to predict product yields during thermal or catalytic pyrolysis of scrap tires. Pyrolysis products contain a variety of hydrocarbons over a wide boiling range. A common approach for kinetic modeling of such complex systems is lumping where each lump is defined by a boiling point range. Available experimental data for thermal and catalytic pyrolysis of scrap tires from the literature were used to evaluate two types of lumping models; discrete and... 

    Determine oil content in petroleum waxes

    , Article Hydrocarbon Processing ; Volume 85, Issue 6 , 2006 , Pages 95-97 ; 00188190 (ISSN) Mafi, M ; Yazdani, F ; Farhadi, F ; Sharif University of Technology
    2006

    Analytical modeling of variable-reluctance tubular resolver based on magnetic equivalent circuit and conformal mapping

    , Article IEEE Transactions on Instrumentation and Measurement ; Volume 70 , 2021 ; 00189456 (ISSN) Keyvannia, A ; Zare, F ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Compared with flat linear structures, tubular linear machines do not face edge effects, making their performance better than their flat counterparts. In this article, a novel linear variable-reluctance resolver with tubular configuration is proposed. To optimize the design of an electromagnetic structure, modeling methods are used. Thus, in this article, an analytical model for the proposed resolver is presented. This model is based on the magnetic equivalent circuit (MEC) method and is considerably less time-consuming than finite element analysis (FEA), yet provides accurate results. A conformal mapping is employed to compute the permeance of the air-gap. The proposed model is then utilized... 

    Information and the Brukner-Zeilinger interpretation of quantum mechanics: A critical investigation

    , Article Foundations of Physics Letters ; Volume 19, Issue 1 , 2006 , Pages 1-20 ; 08949875 (ISSN) Shafiee, A ; Safinejad, F ; Naqsh, F ; Sharif University of Technology
    2006
    Abstract
    In Brukner and Zeilinger's interpretation of quantum mechanics, information is introduced as the most fundamental notion and the finiteness of information is considered as an essential feature of quantum systems. They also define a new measure of information which is inherently different from the Shannon information and try to show that the latter is not useful in defining the information content in a quantum object. Here, we show that there are serious problems in their approach which make their efforts unsatisfactory. The finiteness of information does not explain how objective results appear in experiments and what an instantaneous change in the so-called information vector (or catalog of... 

    Key parameters in hydrothermal synthesis and characterization of low silicon content SAPO-34 molecular sieve

    , Article Microporous and Mesoporous Materials ; Volume 126, Issue 1-2 , 2009 , Pages 1-7 ; 13871811 (ISSN) Izadbakhsh, A ; Farhadi, F ; Khorasheh, F ; Sahebdelfar, S ; Asadi, M ; Yan, Z. F ; Sharif University of Technology
    2009
    Abstract
    Low silicon content SAPO-34 was successfully synthesized using the conventional hydrothermal crystallization in the static condition. Effects of different synthesis conditions including crystallization temperature and the silicon source were investigated through X-ray diffraction patterns. It was concluded that the silicon source had a significant effect on silicon incorporation into the alumino-phosphate building blocks in the course of crystallization. Using precipitated silica instead of silica sol resulted in the formation of impurities of alumino-phosphates phases whose crystalline structures collapse at the high temperature of calcination. For the low silicon SAPO-34 synthesis, the... 

    On the Finiteness of Noetherian Rings with Finitely Many Regular Elements

    , Article Communications in Algebra ; Vol. 42, issue. 7 , 2014 , pp. 2869-2870 ; ISSN: 00927872 Akbari, S ; Heydari, F
    2014
    Abstract
    Let R be a left Noetherian ring and ZD(R) be the set of all zero-divisors of R. In this paper, it is shown that if RZD(R) is finite, then R is finite  

    Precision of direction of arrival (DOA) estimation using novel three dimensional array geometries

    , Article AEU - International Journal of Electronics and Communications ; Volume 75 , 2017 , Pages 35-45 ; 14348411 (ISSN) Poormohammad, S ; Farzaneh, F
    Elsevier GmbH  2017
    Abstract
    Numerous methods for direction of arrival (DOA) estimation, used in smart antennas have been already reported in previous studies. The precision of DOA estimation depends on the choice of the algorithm and the geometrical configuration of the antenna array. In this work, the performance of new geometrical configurations, i.e. 2D with equal area and 3D with equal volume including circular, square, triangular, hexagonal and star geometries, with equal number of antenna elements, are examined and compared to each other to find the most proper geometry. Monte-Carlo simulations are performed to evaluate the DOA precision of the proposed arrays using the MUSIC algorithm. It is shown that in three...