Loading...
Search for:
gandomi--a
0.112 seconds
Total 13803 records
A data mining approach to compressive strength of CFRP-confined concrete cylinders
, Article Structural Engineering and Mechanics ; Volume 36, Issue 6 , Dec , 2010 , Pages 759-783 ; 12254568 (ISSN) ; Alavi, A. H ; Gandomi, A. H ; Arab Esmaeili, M ; Gandomi, M ; Sharif University of Technology
2010
Abstract
In this paper, compressive strength of carbon fiber reinforced polymer (CFRP) confined concrete cylinders is formulated using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA, and a robust variant of GP, namely multi expression programming (MEP). Straightforward GP/SA and MEP-based prediction equations are derived for the compressive strength of CFRP-wrapped concrete cylinders. The models are constructed using two sets of predictor variables. The first set comprises diameter of concrete cylinder, unconfined concrete strength, tensile strength of CFRP laminate, and total thickness of CFRP layer. The most widely used parameters of unconfined concrete...
HybSMRP: a hybrid scheduling algorithm in Hadoop MapReduce framework
, Article Journal of Big Data ; Volume 6, Issue 1 , 2019 ; 21961115 (ISSN) ; Reshadi, M ; Movaghar, A ; Khademzadeh, A ; Sharif University of Technology
Springer
2019
Abstract
Due to the advent of new technologies, devices, and communication tools such as social networking sites, the amount of data produced by mankind is growing rapidly every year. Big data is a collection of large datasets that cannot be processed using traditional computing techniques. MapReduce has been introduced to solve large-data computational problems. It is specifically designed to run on commodity hardware, and it depends on dividing and conquering principles. Nowadays, the focus of researchers has shifted towards Hadoop MapReduce. One of the most outstanding characteristics of MapReduce is data locality-aware scheduling. Data locality-aware scheduler is a further efficient solution to...
Designing a MapReduce performance model in distributed heterogeneous platforms based on benchmarking approach
, Article Journal of Supercomputing ; Volume 76, Issue 9 , 2020 , Pages 7177-7203 ; Movaghar, A ; Reshadi, M ; Khademzadeh, A ; Sharif University of Technology
Springer
2020
Abstract
MapReduce framework is an effective method for big data parallel processing. Enhancing the performance of MapReduce clusters, along with reducing their job execution time, is a fundamental challenge to this approach. In fact, one is faced with two challenges here: how to maximize the execution overlap between jobs and how to create an optimum job scheduling. Accordingly, one of the most critical challenges to achieving these goals is developing a precise model to estimate the job execution time due to the large number and high volume of the submitted jobs, limited consumable resources, and the need for proper Hadoop configuration. This paper presents a model based on MapReduce phases for...
Prediction of seismic damage spectra using computational intelligence methods
, Article Computers and Structures ; Volume 253 , 2021 ; 00457949 (ISSN) ; Gandomi, M ; Plevris, V ; Gandomi, A. H ; Sharif University of Technology
Elsevier Ltd
2021
Abstract
Predicting seismic damage spectra, capturing both structural and earthquake features, is useful in performance-based seismic design and quantifying the potential seismic damage of structures. The objective of this paper is to accurately predict the seismic damage spectra using computational intelligence methods. For this purpose, an inelastic single-degree-of-freedom system subjected to a set of earthquake ground motion records is used to compute the (exact) spectral damage. The Park-Ang damage index is used to quantify the seismic damage. Both structural and earthquake features are involved in the prediction models where multi-gene genetic programming (MGGP) and artificial neural networks...
Numerical Analysis of An Annular Gas Turbine Combustor
, M.Sc. Thesis Sharif University of Technology ; Farshchi, Mohammad (Supervisor)
Abstract
The goal of this research is the simulation of the annular combustion chamber of the turbine engine utilized by liquid fuel. The achievement to this goal will lead to create numerical tools for parametric study, analysis and combustion chamber designing.For this reason simple geometry has been considered. This simplicity of geometry causes to facilitate in parametric study and decrease in saving time for modeling and meshing. This combustion chamber is a simplified model of engine CF6. In recent study, the k – ε realizable model has been used for turbulence modeling. For non-adiabatic condition, chemical reaction is dissolved by utilizing probability density function along with laminar...
Formulation of soil angle of shearing resistance using a hybrid GP and OLS method
, Article Engineering with Computers ; Volume 29, Issue 1 , September , 2013 , Pages 37-53 ; 01770667 (ISSN) ; Alavi, A.H ; Mollahasani, A ; Gandomi, A. H ; Arab Esmaeili, M ; Sharif University of Technology
2013
Abstract
In the present study, a prediction model was derived for the effective angle of shearing resistance (φ′) of soils using a novel hybrid method coupling genetic programming (GP) and orthogonal least squares algorithm (OLS). The proposed nonlinear model relates φ′ to the basic soil physical properties. A comprehensive experimental database of consolidated-drained triaxial tests was used to develop the model. Traditional GP and least square regression analyses were performed to benchmark the GP/OLS model against classical approaches. Validity of the model was verified using a part of laboratory data that were not involved in the calibration process. The statistical measures of correlation...
Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers
, Article Carbohydrate Polymers ; Volume 207 , 2019 , Pages 796-805 ; 01448617 (ISSN) ; Karimi, A ; Gandomi Ravandi, S ; Vossoughi, M ; Khafaji, M ; Joghataei, M. T ; Faghihi, F ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate (CA), cellulose, carboxymethyl cellulose (CMC) and quaternary ammonium cationic cellulose (QACC) for biomedical applications have been reported in this research. Several instrumental techniques were employed to characterize the nanofibers. MTT assay and cell attachment studies were also carried out to determine the cytocompatibility, viability and proliferation of the scaffolds. Fabricated CA, cellulose, CMC and QACC nanofibers had 100–600 nm diameter, −9, −1.75, −12.8, + 22 mV surface potential, 2.5, 4.2, 7.2, 7 MPa tensile strength, 122, 320, 515, 482 MPa Young modules,...
Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers
, Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
2012
Abstract
A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network...
Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend
, Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
2012
Abstract
Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the...
A comparative study of the performance of a SI engine fuelled by natural gas as alternative fuel by thermodynamic simulation
, Article 2009 ASME Internal Combustion Engine Division Fall Technical Conference, ICEF 2009, Lucerne, 27 September 2009 through 30 September 2009 ; 2009 , Pages 49-57 ; 9780791843635 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
American Society of Mechanical Engineers (ASME)
2009
Abstract
With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1-5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost...
Analytical and experimental analyses of nonlinear vibrations in a rotary inverted pendulum
, Article Nonlinear Dynamics ; Volume 107, Issue 3 , 2022 , Pages 1887-1902 ; 0924090X (ISSN) ; Pasharavesh, A ; Khayyat, A. A. A ; Sharif University of Technology
Springer Science and Business Media B.V
2022
Abstract
Gaining insight into possible vibratory responses of dynamical systems around their stable equilibria is an essential step, which must be taken before their design and application. The results of such a study can significantly help prevent instability in closed-loop stabilized systems by avoiding the excitation of the system in the neighborhood of its resonance. This paper investigates nonlinear oscillations of a rotary inverted pendulum (RIP) with a full-state feedback controller. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model, whose parameter values are extracted by both the measurement and 3D modeling of the real system components. Although the governing...
A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils
, Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
ASTM International
2020
Abstract
A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring...
Gum tragacanth gels as a new supporting matrix for immobilization of whole-cell
, Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 24, Issue 4 , 2005 , Pages 1-7 ; 10219986 (ISSN) ; Vaziri, A ; Seifkordi, A. A ; Kheirolomoom, A ; Sharif University of Technology
2005
Abstract
We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G acylase (PGA) activity. The results show that GT beads can not only serve as a proper matrix for immobilization, but show enhanced hydrolysis rate and stability compared to other immobilization systems used for this reaction. This signifies the potential of GT as a biocompatible matrix for...
True Class-E Design For Inductive Coupling Wireless Power Transfer Applications
, Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2022
Abstract
The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been...
Crashworthiness determination of side doors and B pillar of a vehicle subjected to pole side impact
, Article Applied Mechanics and Materials ; Vol. 663, issue , 2014 , p. 552-556 ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2014
Abstract
Pole Side Impact Tes is one out of three crash tests described by Euro NCAP standard for star rating of a vehicle and is required for assessing the Adult Occupant Protection. In this paper the goal is to determine the crashworthiness of side doors and B pillar in a Pole Side Impact Test based on Euro New Car Assessment Program (Euro-NCAP) using computer and simulation method. In this matter, a vehicle model has been prepared and meshed using Hypermesh and CATIA. The velocity of 29 km/h has been assigned to the vehicle which was on top of a cart while the pole has been assigned as a rigid static object based on Euro NCAP requirements specifically. Results show that different amounts of energy...
Investigation of Thickness Influences On Energy Absorption For Side Doors And B Pillar In Euro NCAP Pole Side Impact Test
, Article Applied Mechanics and Materials ; Vol. 663, issue , Oct , 2014 , p. 585-589 ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2014
Abstract
To assess a car under the Euro New Car Assessment Program (Euro-NCAP), Adult Occupant Protection is one out of three parameters which need to be calculated with a weight factor of 50% while the other parameters, Child Occupant Protection and Pedestrian Occupant Protection, have a weight factor of 20%. The Pole Side Impact Test, beside two other tests, Side and Front Impact, is also required to calculate the Adult Occupant Protection. It shows how important the Pole Side Impact Test is and what an effective role it has in the car rating assessment. In this paper, the objective is to evaluate the effect of thickness on the energy absorbed by the side doors and the B pillar and its...
Crashworthiness determination for front and rear doors and B pillar subjected to side impact crash by a mobile deformable barrier
, Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 392-395 ; 19366612 (ISSN) ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2013
Abstract
In Euro NCAP standard, adult protection is one of the most important rating scores with 50% weight factor while child protection and pedestrian protection are accounted into consideration with 20% weight factor. For adult protection testing, three tests are required to perform: (1) side impact, (2) pole impact, (3) front impact. In the side impact test, dummy's head, chest, shoulder, thorax, ribs, abdomen, pelvic and femur must be studied to evaluate the rating score. Crashworthiness of a car during side impact can describe the score rated for that car. In this paper the goal is to determine the crashworthiness of side doors and B-pillar in side impact crash est by simulation using LS DYNA...
Effect of material and thickness of side doors and B pillar on crashworthiness in euro NCAP side impact crash test
, Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 420-424 ; 19366612 (ISSN) ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2013
Abstract
In side impact test which is one out of three tests of Euro NCAP standard, front and rear doors and B pillar are most absorbance parts among vehicle body parts. Passengers are highly in danger while side crash, because of the distance between passenger's head and vehicle body. In this paper effect of material and thickness of doors and B-pillar and their absorbed energy during crash and improvement of its crashworthiness with respect to light weight design are studied using LS DYNA solver. The objective of this paper is to propose a material for doors and B-pillar with a specified thickness to achieve maximum absorbed energy and minimum weight. The shape of the doors and B-pillar remains...
Effect of recycle gas composition of the performance of Fischer-Tropsch catalyst
, Article Petroleum Science and Technology ; Volume 28, Issue 5 , 2010 , Pages 458-468 ; 10916466 (ISSN) ; Khorashe, F ; Safekordi, A. A ; Tavassoli, A ; Sharif University of Technology
2010
Abstract
In this study, the influence of CO2 and CH4 on the performance and selectivity of Co-Ru/Al2O3 catalyst is investigated by injection of these gases (0-20 vol.% of feed) to the feed stream. The effect of temperature and feed flow rate are also inspected. The results show that low amounts of CO2 in the feed stream do not change the catalyst activity, but increasing the amount of CO2 (more than 10 vol.%), causes the CO conversion to decrease and the selectivity of heavy components to increase. Methane acts as an inert gas and does not affect the catalyst performance. Increasing feed flow rate has a negative effect on both CO conversion and heavy component selectivity. By raising the temperature,...
Simulation and estimation of normal dispersion phenomenon in an acentric organic crystal (NPP) by the quantum photonic approach
, Article Modelling and Simulation in Materials Science and Engineering ; Volume 15, Issue 8 , 2007 , Pages 869-878 ; 09650393 (ISSN) ; Zarch, A. W ; Oskouei, A. A ; Amjadi, A ; Sharif University of Technology
2007
Abstract
In this paper, we present a nano-quantum photonic approach for the calculation of normal dispersion phenomena in organic crystals such as N-(4-nitrophenyl)-L-prolinol(NPP). We assume that a laser beam consists of a flow of energetic particles that interact with the distorted π-electron system. We approximate the distorted π-electron cloud by an ellipse to simplify calculations. By the precise analysis of photon interaction with the π-electron system of benzene ring in the NPP crystal, we obtain the refractive index in any wavelength by Monte Carlo simulation. The maximum error between our simulation results and the measurement data is 0.058, which is agreeable. © 2007 IOP Publishing Ltd