Loading...
Search for: ganjali--amir-reza
0.133 seconds

    Design of a Double-Network Hydrogel Scaffold for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Ganjali, Amir Reza (Author) ; Abdekhodaei, Mohammad Jafar (Supervisor)
    Abstract
    Osteoarthritis has always been one of the most common diseases in middle age because it causes severe pain and inflammation in the joints of the body. Cartilage tissue does not have the ability to repair itself. For this reason, fabricating and designing the most efficient, least-expensive, and most convenient methods for the treatment of cartilage defects is always an important issue. Today, there are surgical and injectable methods to relieve pain and initiate the body's natural healing response. But due to the many disadvantages and limitations of these methods, tissue engineering science has turned to modifying these methods or providing new methods. One of these methods is the use of... 

    On small uniquely vertex-colourable graphs and Xu's conjecture [electronic resource]

    , Article Discrete Mathematics ; Volume 223, Issues 1–3, 28 August 2000, Pages 93–108 Daneshgar, A. (Amir) ; Naserasr, Reza ; Sharif University of Technology
    Abstract
    Consider the parameter Λ(G) = |E(G)| - |V(G)|(k - 1) + (k2) for a k-chromatic graph G, on the set of vertices V(G) and with the set of edges E(G). It is known that Λ(G)≥0 for any k-chromatic uniquely vertex-colourable graph G (k-UCG), and, S.J. Xu has conjectured that for any k-UCG, G, Λ(G) = 0 implies that cl(G) = k; in which cl(G) is the clique number of G. In this paper, first, we introduce the concept of the core of a k-UCG as an induced subgraph without any colour-class of size one, and without any vertex of degree k - 1. Considering (k, n)-cores as k-UCGs on n vertices, we show that edge-minimal (k, 2k)-cores do not exist when k ≥ 3, which shows that for any edge-minimal k-UCG on 2k... 

    On Toda equation and half BPS supergravity solution in M-theory

    , Article Journal of High Energy Physics ; Issue 1 , 2006 , Pages 565-578 ; 10298479 (ISSN) Ganjali, M. A ; Sharif University of Technology
    2006
    Abstract
    Recently, it was shown that half BPS Supergravity solution of theories with SU(2|4) symmetry algebra is given uniformly by determining a single function which obeys three dimensional continuous Toda equation. In this paper, we study the scale invariant solution of Toda equation. Our motivation is that some solutions of half BPS sector of IIB supergravity, as one excepts from the fermion description of the theory, are scale invariant. By defining two auxiliary functions we prove that such solutions of Toda equation obey cubic algebraic equation. We obtain some simpl solutions of Toda equation specially, we observe that the PP-wave solution can be written in this fashion. © SISSA 2006  

    DBI with primordial magnetic field in the sky

    , Article Journal of High Energy Physics ; Issue 9 , 2005 , Pages 57-68 ; 10298479 (ISSN) Ganjali, M. A ; Sharif University of Technology
    2005
    Abstract
    In this paper, we study the generation of a large scale magnetic field with amplitude of order μG in an inflationary model which has been introduced in [1]. This inflationary model based on existence of a speed limit for inflaton field. Generating a mass for inflaton at scale above the φIR, breaks the conformal triviality of the Maxwell equation and causes to originate a magnetic field during the inflation. The amplitude strongly depends on the details of reheating stage and also depends on the e-foldings parameter N. We find the amplitude of the primordial magnetic field at decoupling time in this inflationary background using late time behavior of the theory. © SISSA 2005  

    Crack Propagation Modeling in Arched Concrete Structures Reinforced by FRP Using XFEM and Damage Model

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Amir Hossein (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In practice, structures made of concrete are full of cracks. The strength of concrete is mainly determined by the tensile strength, which is about 10% of the compressive strength. As long as cracking in concrete is unavoidable, we have to try to minimize their detrimental effects. This objective can be achieved by resisting (or limiting) propagation of existing cracks. Because of this, reinforcement (mostly steel) is used to increase the carrying capacity of the material and to control the development of cracks. Concrete structures that fail, already shows a large number of large and small cracks before their maximum carrying capacity is reached. The failure of concrete can be characterized... 

    Synthesis of metal nanoparticles using laser ablation technique

    , Article Emerging Applications of Nanoparticles and Architectural Nanostructures: Current Prospects and Future Trends ; March , 2018 , Pages 575-596 ; 9780128135167 (ISBN); 9780323512541 (ISBN) Ganjali, M ; Vahdatkhah, P ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Pulse laser ablation (PLA) technique has been demonstrated to be a simple, compatible, promising, versatile, relatively low-cost, pure, and green approach with the absence of toxic chemicals and reagents for fabrication of metal nanoparticles. Purity is an especially important attribute of metal nanoparticles (NPs) in biological and medical technologies. For such applications, it is crucial to prepare metal NPs with the desired shape and size distribution. This chapter discusses the advantages of the PLA technique as compared with other techniques for metal NPs, explains the various mechanisms involved in the generation of metal NPs, outlines the effects of laser parameters, such as... 

    A Thermo-Mechanical Multi-Scale Simulation for the Compaction Process of the Oxide-Coated Aluminum Nano-Powders

    , M.Sc. Thesis Sharif University of Technology Orvati Movaffagh, Amir Mohammad (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    This research introduces a novel thermo-mechanical multiscale technique, utilizing machine learning, for simulating the compaction process of aluminum nanopowders with surface oxidation at various temperatures. The methodology employed involves the utilization of nonlinear thermo-mechanical Finite Element Method (FEM) for macro scale analysis, while employing the Molecular Dynamics (MD) method to calculate the mechanical and thermal characteristics of aluminum nanopowders at the nano-scale. The first part of the research presents a comprehensive study on the thermal conductivity of alumina-coated aluminum nanopowders, which is a crucial property for their application in powder metallurgy,... 

    XFEM Modeling of Dynamic Cohesive Crack Propagation in Saturated Porous Media

    , M.Sc. Thesis Sharif University of Technology Babazadeh, Mohsen (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In this thesis, a fully coupled numerical model is developed for the modeling of dynamic cohesive crack propagation and hydraulic fracture in saturated porous media using extended finite element method. Many engineering structures like concrete or soil dams and buildings foundation are built with porous materials like concrete, rock and soil. Behavior of these materials in which void among the solid particles are filled with one or more fluids are so complicated rather than single solid phase. Dynamic analysis of porous mediums containing a discontinuity has many applications in various civil engineering fields including structure, earthquake, hydraulic structures, etc. For instance... 

    Polygonal Finite Element Modeling of Fracture Mechanism and Crack Propagation

    , M.Sc. Thesis Sharif University of Technology Yasbolaghi, Reza (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Fracture is one of the most important engineering problems, and the lack of knowledge about this phenomenon will result in loss of life and property. Before the computer age, fracture mechanics has been studied by many analytical mechanics researchers; and after that, lots of attempts have been done to accurately model this phenomenon.
    Finite element method, one of the best methods in Computational Mechanics, is common in computational fracture mechanics. Polygonal finite element is a new concept which has been recently applied in finite element analysis. This research utilized this concept in com-putational fracture mechanics. In another word, the crack discontinuity and crack tip... 

    Multi-sclae Modeling for Determination of Thermal Properties of Silicon Nanostructures Via Molecular Dynamics (MD) and Finite Element Method (FEM)

    , Ph.D. Dissertation Sharif University of Technology DorMohammadi, Hossein (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The band gap offset is an effect of coordination numbers (CNs) of atoms reduction at the edge of transversal cross-section Si nanowires (SiNWs) which would be of increasingly important for greater shell-core ratio sections. In this paper, a hierarchical multi-scale modeling has been developed to simulate edge effect on the band gap shift of SiNWs due to geometry effect induced strain in the self-equilibrium state. Classical Molecular Dynamics (MD) approach and Finite Element Method (FEM) are used in the micro (atomic) and macro scale levels, respectively. Using the Cauchy-Born (CB) hypothesis as a correlator of continuum and atomic properties, the atomic positions are related to the... 

    Modeling the Dynamic Contact with Large Deformations Using the G-ALE-FEM Method

    , M.Sc. Thesis Sharif University of Technology Mohajeri, Sina (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Contact between different parts of a system and their interactions on each other is one of the most important phenomena that we face in modeling a variety of mechanical issues which should be carefully considered. Sometimes, this phenomenon occurs between different components in a phase and some other times between several phases, which, causes changes in the performance and response of the system. Therefore, in order to investigate its effect in particular on dynamic problems that are subject to severe changes over a short period of time, and to provide more effective methods for dealing with it, the subject of this research has been devoted to dynamic contact modeling with large... 

    Coarse-gained Multi-scale Modeling for Numerical Simulation of Nonlinear Behavior of Materials in Nano-scale

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Khashayar (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In this thesis, a coarse-grained multi-scale method for 2D crystallyn solids based-on finite element consepts has presented. In this method, both scales are atomic scale and similar to what we see in non-local QC method, the entire atomic structure will be intact. Accordingly, calculations of potential functions and forces in the domain will have the atomic accuracy. In the presented method to reduce the domain’s degrees of freedom, the classical finite-element meshing concept to mesh the elastic linear areas in the domain is used and the MD calculations will done on the mesh nodes. Therefore, degrees of freedom in the system will reduce and consequently, the computational cost will reduce.... 

    Multiscale Modelling the Nonlinear Behavior of Metallic Nano-powder Compaction Process

    , M.Sc. Thesis Sharif University of Technology Mofatteh, Hossein (Author) ; Khoie, Amir Reza (Supervisor)
    Abstract
    In present research forming process of nanopowders, which is a part of powder metallurgy was investigated by molecular dynamics method. Powder metallurgy is a relatively new method for production of industrial parts by pouring powder into die and compaction to desired density. One can reach parts with higher quality and strength by decreasing size of powder’s particles and entering the nano scale. Particle with smaller size have higher specific surface and due more intensity to react. Classic methods for investigation of this process don’t cover the atomic scale effects, so using newer procedures such as molecular dynamics is highly recommended. In present research, at first compaction of... 

    Modeling Fracture Problems with X-FEM

    , M.Sc. Thesis Sharif University of Technology Broumand, Pooyan (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Every year, fracture imposes high economic costs and casualties to all societies. Since the beginning of the twentieth century, scientific approach to this issue has lead to invention of a new branch in mechanics, called fracture mechanics. In general, fracture problems fall into two categories. Brittle fracture, like what happens in glass, in which, few plastic deformations and energy absorption occurs and ductile fracture, which is preceded by large plastic deformations and energy absorption. This kind of fracture is usual in ductile metals like low carbon steel. Finite Element which is considered as the most important numerical method in the mechanics of materials, is also, widely used in... 

    Modeling Saturated Porous Media Using Extended Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Haghighat, Ehsan (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Soil structures have important roles in civil engineering applications. The most important types of these structures are soil dams and foundations which their damages may cause huge loss. Thus, appropriate analysis of these structures under possible loading conditions is unavoidable. The real behavior of this media can be achieved from the solution of its coupled governing differential equations. In order to solve this set of equations in practical applications, appropriate numerical solutions should be used. The finite element method can be called as one of the most important numerical solutions of differential equations which have been used in analyzing different types of engineering... 

    Modeling of Incompressible Materials Using the Extended Finite Element Method (XFEM)

    , M.Sc. Thesis Sharif University of Technology Mirkhosravi, Poorya (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In the limit case of incompressibility, the displacement-based finite element methods are not capable of finding the solutions with adequate accuracy. Moreover, discontinuities in displacement field or strain field which exist in the interior of the elements should be dealt with appropriately. The u/p mixed formulation provides a suitable context for modeling the incompressible problems. It is capable of solving general problems in which there exist geometrical or material nonlinearities. In the case of employing the eXtended Finite Element Method (XFEM), uniform meshes can be used for problems with discontinuities and in fact the discontinuities can be decoupled from the mesh. In this... 

    A None-Associated Cap Plasticity with Isotropic-Kinematic Hardening-Softening Rule

    , M.Sc. Thesis Sharif University of Technology Seyedein, Soheil (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The constitutive modeling of material is clearly a keystone of successful quantitative solution possibilities. No finite element code will provide results of better quality than that of the constitutive equation implemented in it. In this study, a nonassociated three-invariant cap plasticity model is presented for material under compressive stress. Generalized single-cap plasticity is developed which is based on the hardening-softening material functions. The hardening functions are consisted of isotropic and kinematic parts. Using the definition of yield surface, material functions and nonlinear elastic behavior, as function of hardening-softening parameters, the constitutive elasto-plastic... 

    Contact Friction Modeling Using a new Node-to-Surface Algorithm

    , M.Sc. Thesis Sharif University of Technology Vafa, Alireza (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The present research illustrate the finite element modeling of contact between solid bodies, with a special emphasis on the imposing the contact constraints and modification of contact properties on surface in the case of frictional slip. A new approach for both two-dimensional and three-dimensional formulation of contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the presence of large deformations in static case, is presented. The most important outstanding issue in this approach is symmetrical contact stiffness matrix which reduces computational efforts. Based on the observation of numerical results and comparison by experimental models,... 

    Modelling of Elastic and Plastic Deformation Fracture and Crack Propagation in 3D Problems Using Adaptive Finite Element Method

    , Ph.D. Dissertation Sharif University of Technology Moslemi, Hamid (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Numerical methods in fracture and crack propagation problems usually involve high computational costs. Adaptive finite element method is one of the techniques which can be used to simulate the crack propagation with an acceptable accuracy. In this thesis, various constitutive models are implemented for simulation of fracture, including the linear elastic fracture mechanics, cohesive zone model and continuum damage mechanics. The fracture mechanical evaluation is performed on a general integral technique for non-planar curved cracks in LEFM. In the second model, a bilinear cohesive zone model is applied to implement the traction-separation law. The Lemaitre damage model is employed and the... 

    Modeling of Crack Propagation in Saturated Two Phase Porous Media Using X-FEM

    , M.Sc. Thesis Sharif University of Technology Vahhab, Mohammad (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Twophase medias are one of the most complicated medias in engineering and because of its importance, its been considered by a lot of researchers ever since. Varaioty of the problems in these medias, has ended in lots of methods for studing them. The primariative efforts in modeling deformable pouros medias was done by Terzaghi and others have improved the primary consepts and have suggested different methods. One of the most common and applicable methods in these medias is u-p formulation. This form is applicable in low frequencies (such as earthquakes) with great accuracy. In this thises, this form is used as primery formulation. Because deformation in multiphase problems can be large, in...