Loading...
Search for: ghaderi--a
0.105 seconds

    Corrosion inhibition of a novel antihistamine-based compound for mild steel in hydrochloric acid solution: experimental and computational studies

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Ghaderi, M ; Ahmad Ramazani, S. A ; Kordzadeh, A ; Mahdavian, M ; Alibakhshi, E ; Ghaderi, A ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Focused on the assessment of the diphenhydramine hydrochloride (DPH) capabilities as an alternative to conventional and harmful industrial corrosion inhibitors, electrochemical techniques were employed. The optimum concentration of 1000 ppm was determined by molecular simulation and validated through electrochemical experiments. The results acquired from the electrochemical impedance spectroscopy (EIS) study showed that DPH at a concentration of 1000 ppm has a corrosion efficiency of 91.43% after 6 h immersion. The DPH molecules' orientation on the surface was assessed based on EIS predicting horizontal adsorption on the surface. Molecular simulations were done to explore the adsorption... 

    Analysis of functionally graded cylindrical panel under mechanical loading

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 10 PART B , 2008 , Pages 867-876 ; 0791843041 (ISBN); 9780791843048 (ISBN) Ghaderi, P ; Fathizadeh, A ; Bankehsaz, M ; Sharif University of Technology
    2008
    Abstract
    In this paper a semi-analytical method is developed to analyze functionally graded cylindrical panels. In this method, the radial domain is divided into some finite sub-domains and the material properties are assumed to be constant in each subdomain. Imposing the continuity conditions at the interface of the adjacent sub-domains, together with the global boundary conditions, a set of linear algebraic equations are derived. Solving the linear algebraic equations, the elastic response for the thick-walled FG cylindrical panel is obtained. The method can be used for all material properties variations but in present study, material properties are assumed vary with Mori-Tanaka estimation. Results... 

    Bayesian reliability-based robust design optimization of mechanical systems under both aleatory and epistemic uncertainties

    , Article Engineering Optimization ; 2022 ; 0305215X (ISSN) Hassani, H ; Khodaygan, S ; Ghaderi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Uncertainties can be divided into two general categories: aleatory and epistemic. Conventional reliability-based robust design optimization approaches, which disregard epistemic uncertainties due to lack of knowledge about the physical nature of systems, have previously been developed. To overcome this weakness, unlike previous methods, a Bayesian reliability-based robust design optimization method is proposed in the presence of both aleatory and epistemic uncertainties. The proposed formulation is presented as a multi-objective optimization problem. The univariate dimension reduction method is used to approximate the mean and variance of the design function. The non-dominated sorting... 

    Applications of highly salt and highly temperature resistance terpolymer of acrylamide/styrene/maleic anhydride monomers as a rheological modifier: Rheological and corrosion protection properties studies

    , Article Journal of Molecular Liquids ; Volume 294 , 2019 ; 01677322 (ISSN) Ghaderi, S ; Ramezani Saadat Abadi, A ; Haddadi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Due to the weak performance of commercially affordable natural and synthetic polymeric thickeners in high temperatures and salinity, they fail to use in many applications especially in saline conditions with high temperatures. In this work, a new salt and temperature resistance acrylamide/styrene/maleic anhydride terpolymer (PASM-t) with self-associative properties was synthesized via a one-step inverse emulsion polymerization and its applicability as a rheological modifier and thickener was investigated. The characteristics of synthesized PASM-t (s-PASM-t) and its aqueous solutions were investigated using FT-IR, FE-SEM, GPC and rheometric mechanical spectrometry (RMS) analyses. The... 

    A new approach for solution of time dependent neutron transport equation based on nodal discretization using MCNPX code with feedback

    , Article Annals of Nuclear Energy ; Volume 133 , 2019 , Pages 519-526 ; 03064549 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper proposes a new method for solving the time-dependent neutron transport equation based on nodal discretization using the MCNPX code. Most valid nodal codes are based on the diffusion theory with differences in approximating the leakage term until now. However, the Monte Carlo (MC) method is able to estimate transport parameters without approximations usual in diffusion method. Therefore, improving the nodal approach via the MC techniques can substantially reduce the errors caused by diffusion approximations. In the proposed method, the reactor core is divided into nodes of arbitrary dimensions, and all terms of the transport equation e.g. interaction rates and leakage ratio are... 

    Implementation of a dynamic Monte Carlo method for transients analysis with thermal-hydraulic feedbacks using MCNPX code

    , Article Annals of Nuclear Energy ; Volume 130 , 2019 , Pages 240-249 ; 03064549 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Transient analysis which is vital in safety analysis requires a reliable calculation method. Most valid tools use diffusion theory with many approximations by now. However, the Monte Carlo method inherently overcomes these approximations and accurately calculates the parameters of a reactor. In this paper, a new time-dependent transport approach is described to simulate the nuclear reactor dynamic correctly using the MCNPX code. In this approach the fundamental parameters of a nuclear reactor like multiplication factor (K eff ) and mean generation time (t G ) are calculated using MCNPX code. They are then employed in the formulas to compute neutron population, proportional to K eff , during... 

    A new Monte Carlo approach for solution of the time dependent neutron transport equation based on nodal discretization to simulate the xenon oscillation with feedback

    , Article Annals of Nuclear Energy ; Volume 141 , 2020 Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper a probabilistic methodology based on core nodalization is proposed to estimate the core power in the presence of xenon oscillation. A time-dependent Monte Carlo neutron transport code named MCSP-NOD is developed for dynamic analysis in arbitrary 3D geometries to simulate xenon oscillations as well as sub-critical condition with feedbacks. The new code is based on the approach adopted in MCNP-NOD which was previously introduced as a tool for core transient analysis using the MCNPX platform. As before, the core is divided into nodes of arbitrary dimensions, and all terms of the transport equation e.g. interaction rates, leakage ratio are estimated using the MC techniques.... 

    Synthesis and characterization of highly hydrophilic self-associating terpolymers: Rheological, thermal, and corrosion protection studies

    , Article Chemical Engineering Journal ; Volume 405 , 2021 ; 13858947 (ISSN) Ghaderi, S ; Ramazani Saadatabadi , A ; Haddadi, S. A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, water-soluble terpolymers containing highly hydrophilic monomers of acrylamide and maleic anhydride and highly hydrophobic monomers of styrene were synthesized (ASM) through the one-step inverse emulsion polymerization. Proton nuclear magnetic resonance (1H NMR), fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction pattern (XRD) were performed to investigate the chemical structures and structural transformations of ASM. Thermal stability and thermal decomposition steps of ASM were studied by thermogravimetric analysis (TGA). An Ubbelhode capillary viscometer and a rheological mechanical spectrometer (RMS) were employed to obtain the specific, relative, and... 

    Modification of a dynamic monte carlo technique to simplify and accelerate transient analysis with feedback

    , Article Nuclear Science and Engineering ; 2021 ; 00295639 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In this paper, a simpler approach compared to the existing approaches is developed to analyze nuclear reactor dynamics based on the explicit Monte Carlo method. A new population control method is also introduced to prevent neutron population growth and consequent computer memory shortages, which also increases simulation speed. The scheme is applied for time-dependent particle tracking in three-dimensional arbitrary geometries in the presence of feedbacks through a code named MCSP-Explicit. Changes in material density, as well as geometry dimensions, are also considered during simulation. MCSP-Explicit can be run with either continuous or multigroup data libraries, and it is further boosted... 

    Separability in asymmetric phase-covariant cloning

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 336, Issue 4-5 , 2005 , Pages 278-289 ; 03759601 (ISSN) Rezakhani, A. T ; Siadatnejad, S ; Ghaderi, A. H ; Sharif University of Technology
    Elsevier  2005
    Abstract
    Here, asymmetric phase-covariant quantum cloning machines are defined and trade-off between qualities of their outputs and its impact on entanglement properties of the outputs are studies. In addition, optimal families among these cloners are introduced and also their entanglement properties are investigated. An explicit proof of optimality is presented for the case of qubits, which is based on the no-signaling condition. Our optimality proof can also be used to derive an upper bound on trade-off relations for a more general class of optimal cloners which clone states on a specific orbit of the Bloch sphere. It is shown that the optimal cloners of the equatorial states, as in the case of... 

    Modification of a dynamic monte carlo technique to simplify and accelerate transient analysis with feedback

    , Article Nuclear Science and Engineering ; Volume 196, Issue 4 , 2022 , Pages 395-408 ; 00295639 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, a simpler approach compared to the existing approaches is developed to analyze nuclear reactor dynamics based on the explicit Monte Carlo method. A new population control method is also introduced to prevent neutron population growth and consequent computer memory shortages, which also increases simulation speed. The scheme is applied for time-dependent particle tracking in three-dimensional arbitrary geometries in the presence of feedbacks through a code named MCSP-Explicit. Changes in material density, as well as geometry dimensions, are also considered during simulation. MCSP-Explicit can be run with either continuous or multigroup data libraries, and it is further boosted... 

    In situ postweld heat treatment of transformation induced plasticity steel resistance spot welds

    , Article Science and Technology of Welding and Joining ; Volume 23, Issue 1 , 2018 , Pages 71-78 ; 13621718 (ISSN) Sajjadi Nikoo, S ; Pouranvari, M ; Abedi, A ; Ghaderi, A. A ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Transformation-induced plasticity (TRIP) steel resistance spot welds are delicate to low-energy interfacial failure via crack propagation through martensitic fusion zone during cross-tension (CT) loading. This paper addresses the effect of three different types of in situ postweld heat treatment (PWHT) on the mechanical properties of TRIP steel resistance spot welds. Depending on the post weld second pulse current level, three different strengthening mechanisms were found including (i) martensite tempering with reduced hardness, (ii) refining of martensite packets with improved toughness and (iii) nugget re-melting/enlargement combined with possible reduction of grain boundary impurity... 

    PH-Sensitive polydopamine–La (III) complex decorated on carbon nanofiber toward on-demand release functioning of epoxy anti-corrosion coating

    , Article Langmuir ; Volume 38, Issue 38 , 2022 , Pages 11707-11723 ; 07437463 (ISSN) Ghaderi, M ; Saadatabadi, A. R ; Mahdavian, M ; Haddadi, S. A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The high aspect ratio and unique thermal and electrical characteristics of carbon nanofiber (CNF) made it an ideal physical barrier against the penetration of corrosive ions. However, the poor compatibility of the CNF with the polymer matrix and the lack of active corrosion inhibitors are the key limitations of this nanomaterial, resulting in short-term anti-corrosion resistance. An intelligent self-healing epoxy (EP) coating, including CNF modified with a polydopamine (PDA)-La3+ complex, was successfully fabricated to overcome these issues. Electrochemical impedance spectroscopy (EIS) evaluation implied that mild steel (MS) submerged in a 3.5 wt % NaCl solution containing the CNF-PDA-La... 

    Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer

    , Article Journal of Materials Chemistry B ; Vol. 2, Issue. 21 , 2014 , p. 3306-3314 Akhavan, O ; Meidanchi, A ; Ghaderi, E ; Khoei, S ; Sharif University of Technology
    2014
    Abstract
    A magneto-photothermal therapy for cancer (in vitro photothermal therapy of prostate cancer cells and in vivo photothermal therapy of human glioblastoma tumors in the presence of an external magnetic field) was developed using superparamagnetic zinc ferrite spinel (ZnFe2O4)-reduced graphene oxide (rGO) nanostructures (with various graphene contents). In vitro application of a low concentration (10 μg mL-1) of the ZnFe 2O4-rGO (20 wt%) nanostructures under a short time period (∼1 min) of near-infrared (NIR) irradiation (with a laser power of 7.5 W cm-2) resulted in an excellent destruction of the prostate cancer cells, in the presence of a magnetic field (∼1 Tesla) used for localizing the... 

    Preparation and characterization of PVDF/Starch nanocomposite nanofibers using electrospinning method

    , Article Materials Today: Proceedings, 2 May 2017 through 3 May 2017 ; Volume 5, Issue 7 , 2018 , Pages 15613-15619 ; 22147853 (ISSN) Amini, M ; Haddadi, A ; Ghaderi, S ; Ramazani, A ; Ansarizadeh, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, poly (vinylidene fluoride) PVDF/Starch nanofibers with a great potential for tissue engineering applications have been investigated. The electrospun nanofibers were formed by the electrospinning of the PVDF/Starch solutions in various ratios of PVDF to Starch. Characterizations of PVDF/Starch nanofiber were performed using rheometric mechanical spectroscopy (RMS), field emission scanning electron microscope (FE-SEM) and tensile test. The results showed that the addition of more Starch into the PVDF solution increased the viscosity of the prepared PVDF/Starch solutions. In addition, the mechanical properties of PVDF enhanced in the presence of Starch due to the higher... 

    A low-power smart temperature sensor for passive UHF RFID tags and sensor nets

    , Article 2016 8th International Symposium on Telecommunications, IST 2016, 27 September 2016 through 29 September 2016 ; 2017 , Pages 12-17 ; 9781509034345 (ISBN) Ghaderi Karkani, M. R ; Kamarei, M ; Fotowat Ahmady, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    A low-power wide-range CMOS temperature sensor architecture is proposed for RFID and Sensor Networks based on temperature-to-frequency conversion using supply voltage controlled sub-threshold ring oscillator. The principles of operation are investigated and proved via simulation results. Most errors are canceled out by this ratio-metric design. An inaccuracy of -0.84°C to +0.34°C occurs over a range of -40°C to 80°C after using a novel in-field digital two-point calibration. The entire sensor consumes less than 93nW to 305nW over the temperature range and can be digitally reconfigured for setting sample rate and resolution in a tradeoff. © 2016 IEEE  

    Synthesis and cation-exchange behavior of expanded MoS2 nanosheets for anticorrosion applications

    , Article 2017 INN International Conference/Workshop on Nanotechnology and Nanomedicine, NTNM 2017, 2 May 2017 through 3 May 2017 ; Volume 5, Issue 7 , 2018 , Pages 15573-15579 ; 22147853 (ISSN) Haddadi, S. A ; Amini, M ; Ghaderi, S ; Ramazani, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Molybdenum disulfide (MoS2), a 2D layered structure, because of its unique properties has widely attracted many researchers. In this study, by employing physical and chemical methods, not only layers of MoS2 have been intercalated, but also their surface properties enhanced. Low-dimensional and potential properties of intercalated MoS2 nanosheets are the aim of many researches. Here, we report a novel four step method to intercalate the layers of MoS2 nanosheets successfully using acid treatment, sonication, oxidization and thermal shocking. The other goal in this study is to evaluate the cation exchange ability and anticorrosion performance of the Ce3+ doped MoS2 nanosheets. The... 

    Application of sustainable saffron purple petals as an eco-friendly green additive for drilling fluids: A rheological, filtration, morphological, and corrosion inhibition study

    , Article Journal of Molecular Liquids ; Volume 315 , 2020 Ghaderi, S ; Haddadi, S. A ; Davoodi, S ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, effects of dried saffron purple petals (SPP) powder were examined on the rheological, fluid loss, and corrosion inhibition properties of bentonite-based drilling fluids. Drilling fluids containing different amounts of the SPP powder were prepared and their rheological behavior was investigated via the rotary viscometry and rheometric mechanical spectroscopy (RMS). Rotary viscometer results were fitted with Power-law, Bingham plastic, and Herschel-Bulkley models and the obtained data were compared with that of the base mud. All models fitted the rotary viscometer data with the determination coefficients higher than 0.93. The presence of 3 wt% of the SSP in the fluid... 

    All-optical set-reset flip-flop based on frequency bistability in semiconductor microring lasers

    , Article Optics Communications ; Volume 282, Issue 12 , 2009 , Pages 2451-2456 ; 00304018 (ISSN) Bahrampour, A. R ; Zakeri, S ; Mirzaee, M. A ; Ghaderi, Z ; Farman, F ; Sharif University of Technology
    2009
    Abstract
    The electric field of the modes of semiconductor microring lasers (SMRLs) in the presence of bus waveguide reflections are linear combinations of the clock wise (CW) and the counter clock wise (CCW) electric fields. The mode structures can be controlled by the waveguide reflection coefficients. The power ratio and phase difference of the CW and CCW fields of one mode is proportional to the ratio of the reflection coefficients of the left and right waveguides. It is shown that the degenerate CW and CCW modes in the presence of bus waveguide reflections are split into two modes with different frequencies. Employing these new modes, SMRL can be used as an element to design flip-flops used in... 

    Design of Fault Tolerant Processor for Implementation on SRAM Based FPGAs

    , M.Sc. Thesis Sharif University of Technology Ghaderi, Zana (Author) ; Miremadi, Ghasem (Supervisor)
    Abstract
    Vulnerability of SRAM-based FPGAs to soft errors signals the importance of applying fault-tolerant methods in FPGAs used in safety-critical applications. Previous methods to protect SRAM-based FPGAs impose significant area and power overheads. Additionally, they suffer from susceptibility of configuration bits to Single Event-Multiple Upsets (SEMU). This thesis presents a Highly Available Fault-Tolerant Architecture (HAFTA) to protect SRAM-based FPGA designs against SEMUs in both configuration and user bits. In HAFTA, the entire design is duplicated and the main and replica flip-flops are compared at each clock cycle to detect any possible mismatch. To save the latest correct state of the...