Loading...
Search for:
ghahremani--amir-reza
0.116 seconds
Total 2988 records
Temperature-Dependent Hierarchical Multi-Scale Modeling of Nano-Materials Considering Surface Effect
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
In continuum mechanics, the constitutive models are usually based on the Cauchy-Born (CB) hypothesis which seeks the intrinsic characteristics of the material via the atomistic information and it is valid in small deformation. The main purpose of this thesis is to investigate the temperature effect on the stability and size dependency of Cauchy-Born hypothesis and a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. Three-dimensional temperature-related Cauchy-Born formulation are developed for crystalline structure and the stability and size dependency of temperature-related...
Temperature-dependent multi-scale modeling of surface effects on nano-materials
, Article Mechanics of Materials ; Volume 46 , March , 2012 , PP. 94–112 ; Ghahremani, P ; Sharif University of Technology
2012
Abstract
In this paper, a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. In order to evaluate the temperature effect in the micro-scale (atomic) level, the temperature related Cauchy–Born hypothesis is implemented by employing the Helmholtz free energy, as the energy density of equivalent continua relating to the inter-atomic potential. The multi-scale technique is applied in atomistic level (nano-scale) to exhibit the temperature related characteristics. The first Piola–Kirchhoff stress and tangential stiffness tensor are computed, as the first and second derivatives of the free energy...
Experimental Investigation of Velocity Field Due to Liquid Droplet Impingement Onto the Surface af a Molten Phase Change Material
, M.Sc. Thesis Sharif University of Technology ; Shafii, Mohammad Behshad (Supervisor) ; Ghahremani, Amir Reza (Co-Supervisor)
Abstract
The impact of droplets is a widely used method for creating direct heat transfer between two fluids. This method enhances heat transfer between the working fluid and the phase change material (PCM). Therefore, a thorough investigation has been carried out on the impact of an acetone droplet on the surface of a pool of molten paraffin, which leads to the simultaneous boiling of the acetone droplet and solidifying part of the paraffin in contact with the acetone. The dynamics of impact, the depth and width of the crater, the jet, and the crown formed as a result of the impact have been reported with varying Weber numbers (ranging from 74 to 375), and the temperature of the pool surface of the...
On small uniquely vertex-colourable graphs and Xu's conjecture [electronic resource]
, Article Discrete Mathematics ; Volume 223, Issues 1–3, 28 August 2000, Pages 93–108 ; Naserasr, Reza ; Sharif University of Technology
Abstract
Consider the parameter Λ(G) = |E(G)| - |V(G)|(k - 1) + (k2) for a k-chromatic graph G, on the set of vertices V(G) and with the set of edges E(G). It is known that Λ(G)≥0 for any k-chromatic uniquely vertex-colourable graph G (k-UCG), and, S.J. Xu has conjectured that for any k-UCG, G, Λ(G) = 0 implies that cl(G) = k; in which cl(G) is the clique number of G. In this paper, first, we introduce the concept of the core of a k-UCG as an induced subgraph without any colour-class of size one, and without any vertex of degree k - 1. Considering (k, n)-cores as k-UCGs on n vertices, we show that edge-minimal (k, 2k)-cores do not exist when k ≥ 3, which shows that for any edge-minimal k-UCG on 2k...
Crack Propagation Modeling in Arched Concrete Structures Reinforced by FRP Using XFEM and Damage Model
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
In practice, structures made of concrete are full of cracks. The strength of concrete is mainly determined by the tensile strength, which is about 10% of the compressive strength. As long as cracking in concrete is unavoidable, we have to try to minimize their detrimental effects. This objective can be achieved by resisting (or limiting) propagation of existing cracks. Because of this, reinforcement (mostly steel) is used to increase the carrying capacity of the material and to control the development of cracks. Concrete structures that fail, already shows a large number of large and small cracks before their maximum carrying capacity is reached. The failure of concrete can be characterized...
, M.Sc. Thesis Sharif University of Technology ; Akbari, Javad (Supervisor) ; Movahhedy, Mohammad Reza (Supervisor)
Abstract
In conventional grinding of hard to cut materials such as Ti6Al4V alloys, surface burning, redeposition and adhesion of chips to wheel and workpeice occur visibly unless it is carried out at low speeds and with high volume of cutting fluid. Ultrasonic assisted grinding (UAG) is an efficient machining process for hard-to-cut materials with poor machinability. UAG improves the machinability of such materials by changing the kinematics of the process. In this research, the effect of imposition of ultrasonic vibration on the grinding of Ti6Al4V is studied. Longitudinal vibration at ultrasonic frequency range (20 kHz) is applied on the workpiece and machining forces and surface roughness are...
Optimization of Gearbox Housing for Reduction of Radiated Vibration
, M.Sc. Thesis Sharif University of Technology ; Saadat Foumani, Mahmoud (Supervisor) ; Movahhedy, Mohammad Reza (Supervisor)
Abstract
Among various impacts on environment, the noise problem arising from the expansion of technology has been an important factor, especially in recent years. The noise level in the automotive industry is also considered as a desirability coefficient. One of the most important factors which are causing noise in the vehicle is an automotive gearbox system. The gearbox is major component of automotive powertrain. In the gearbox system, gears pairs generates mechanical noises in the gearbox that transfer to other parts of the car by gearbox housing. Therefore, reduction and isolation this vibration in gearbox housing have crucial role in reducing the noise level of the vehicle. The aim of this...
A Thermo-Mechanical Multi-Scale Simulation for the Compaction Process of the Oxide-Coated Aluminum Nano-Powders
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
This research introduces a novel thermo-mechanical multiscale technique, utilizing machine learning, for simulating the compaction process of aluminum nanopowders with surface oxidation at various temperatures. The methodology employed involves the utilization of nonlinear thermo-mechanical Finite Element Method (FEM) for macro scale analysis, while employing the Molecular Dynamics (MD) method to calculate the mechanical and thermal characteristics of aluminum nanopowders at the nano-scale. The first part of the research presents a comprehensive study on the thermal conductivity of alumina-coated aluminum nanopowders, which is a crucial property for their application in powder metallurgy,...
Polygonal Finite Element Modeling of Fracture Mechanism and Crack Propagation
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
Fracture is one of the most important engineering problems, and the lack of knowledge about this phenomenon will result in loss of life and property. Before the computer age, fracture mechanics has been studied by many analytical mechanics researchers; and after that, lots of attempts have been done to accurately model this phenomenon.
Finite element method, one of the best methods in Computational Mechanics, is common in computational fracture mechanics. Polygonal finite element is a new concept which has been recently applied in finite element analysis. This research utilized this concept in com-putational fracture mechanics. In another word, the crack discontinuity and crack tip...
Finite element method, one of the best methods in Computational Mechanics, is common in computational fracture mechanics. Polygonal finite element is a new concept which has been recently applied in finite element analysis. This research utilized this concept in com-putational fracture mechanics. In another word, the crack discontinuity and crack tip...
XFEM Modeling of Dynamic Cohesive Crack Propagation in Saturated Porous Media
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
In this thesis, a fully coupled numerical model is developed for the modeling of dynamic cohesive crack propagation and hydraulic fracture in saturated porous media using extended finite element method. Many engineering structures like concrete or soil dams and buildings foundation are built with porous materials like concrete, rock and soil. Behavior of these materials in which void among the solid particles are filled with one or more fluids are so complicated rather than single solid phase. Dynamic analysis of porous mediums containing a discontinuity has many applications in various civil engineering fields including structure, earthquake, hydraulic structures, etc. For instance...
Multi-sclae Modeling for Determination of Thermal Properties of Silicon Nanostructures Via Molecular Dynamics (MD) and Finite Element Method (FEM)
,
Ph.D. Dissertation
Sharif University of Technology
;
Khoei, Amir Reza
(Supervisor)
Abstract
The band gap offset is an effect of coordination numbers (CNs) of atoms reduction at the edge of transversal cross-section Si nanowires (SiNWs) which would be of increasingly important for greater shell-core ratio sections. In this paper, a hierarchical multi-scale modeling has been developed to simulate edge effect on the band gap shift of SiNWs due to geometry effect induced strain in the self-equilibrium state. Classical Molecular Dynamics (MD) approach and Finite Element Method (FEM) are used in the micro (atomic) and macro scale levels, respectively. Using the Cauchy-Born (CB) hypothesis as a correlator of continuum and atomic properties, the atomic positions are related to the...
Multiscale Modelling the Nonlinear Behavior of Metallic Nano-powder Compaction Process
, M.Sc. Thesis Sharif University of Technology ; Khoie, Amir Reza (Supervisor)
Abstract
In present research forming process of nanopowders, which is a part of powder metallurgy was investigated by molecular dynamics method. Powder metallurgy is a relatively new method for production of industrial parts by pouring powder into die and compaction to desired density. One can reach parts with higher quality and strength by decreasing size of powder’s particles and entering the nano scale. Particle with smaller size have higher specific surface and due more intensity to react. Classic methods for investigation of this process don’t cover the atomic scale effects, so using newer procedures such as molecular dynamics is highly recommended. In present research, at first compaction of...
Coarse-gained Multi-scale Modeling for Numerical Simulation of Nonlinear Behavior of Materials in Nano-scale
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
In this thesis, a coarse-grained multi-scale method for 2D crystallyn solids based-on finite element consepts has presented. In this method, both scales are atomic scale and similar to what we see in non-local QC method, the entire atomic structure will be intact. Accordingly, calculations of potential functions and forces in the domain will have the atomic accuracy. In the presented method to reduce the domain’s degrees of freedom, the classical finite-element meshing concept to mesh the elastic linear areas in the domain is used and the MD calculations will done on the mesh nodes. Therefore, degrees of freedom in the system will reduce and consequently, the computational cost will reduce....
Modeling the Dynamic Contact with Large Deformations Using the G-ALE-FEM Method
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
Contact between different parts of a system and their interactions on each other is one of the most important phenomena that we face in modeling a variety of mechanical issues which should be carefully considered. Sometimes, this phenomenon occurs between different components in a phase and some other times between several phases, which, causes changes in the performance and response of the system. Therefore, in order to investigate its effect in particular on dynamic problems that are subject to severe changes over a short period of time, and to provide more effective methods for dealing with it, the subject of this research has been devoted to dynamic contact modeling with large...
Numerical Simulation of Multi Stage Pulse Tube Refrigerators
, M.Sc. Thesis Sharif University of Technology ; Saeedi, Mohammad Hassan (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
Abstract
Multi stage Pulse Tube Cryocoolers (PTCs) have found the interest of researchers due to its reliability, long life and absence of moving part. This thesis represents a comprehensive numerical simulation method to investigate one and two stage PTC. All components of the PTC are modeled employing the nodal analysis technique to discretize the mass, momentum and energy conservation equations. SUTPTC code has been developed in cryocooler laboratory of Sharif University of Technology (SUT) to analyze and optimize one and two stage cryocooler performance. The SUTPTC code has been validated with the existing experimental data. Employing the proposed code, the effect of precooling temperature, the...
Modeling of Incompressible Materials Using the Extended Finite Element Method (XFEM)
,
M.Sc. Thesis
Sharif University of Technology
;
Khoei, Amir Reza
(Supervisor)
Abstract
In the limit case of incompressibility, the displacement-based finite element methods are not capable of finding the solutions with adequate accuracy. Moreover, discontinuities in displacement field or strain field which exist in the interior of the elements should be dealt with appropriately. The u/p mixed formulation provides a suitable context for modeling the incompressible problems. It is capable of solving general problems in which there exist geometrical or material nonlinearities. In the case of employing the eXtended Finite Element Method (XFEM), uniform meshes can be used for problems with discontinuities and in fact the discontinuities can be decoupled from the mesh. In this...
Application of Isogeometric Method in Modeling and Analyzing Crack Growth Problems
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
Isogeometric Analysis method is a newly introduced method for the analysis of problems governed by partial differential equations. The method has some features in common with the finite element method and some in common with the mesh-less methods. This method uses the Non-Uniform Rational B-Splines (NURBS) functions as basis function for analysis. With this basis functions, the refinement procedure is much easier than the classical finite element method by eliminating the need to communicate with the CAD model. Modeling cracks in classical finite element method requires very fine mesh near the crack tip. One can model crack propagation by means of classical finite element, using an updating...
Modeling of Crack Propagation in Non-isothermalsaturatedPorous Media using XFEM
,
M.Sc. Thesis
Sharif University of Technology
;
Khoei, Amir Reza
(Supervisor)
Abstract
The probability of crack appearance in soil structures and porous media is not avoidable, which could be the reason of structures collapse. According to the important affects, which they play in the vulnerability of the structures, they should be taking into account. The cracks have different effects on various materials. The most properties that cracks have, is their ability of conveying the fluid flow. For the most accurate analysis of discontinues domains, their governing equations should be taken and solved. Finite Element Method is one of the best solutions of differential governing equations. However, the appearance of some problems in the modeling of discontinues domain, was the...
Simulation of Crack Propagation in Ductile Metals Under Dynamic Cyclic Loading by Adaptive Finite Element Method and Continuum Damage Mechanics Model
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
Crack nucleation and growth is unfavorable in many industrial and every day-life cases. designers’ effort is to prevent or delay it by taking into account safety and maintenance considerations; but in some industrial operations, the main target is to form a crack in a part to achieve a particular shape; and designers’ duty is to control the way it happens. so numerical modeling of this phenomena has many useful applications in preventing the structures’ failure and designing the production processes for industrial goods; and because of this, a great attention has been paid to it in the last two decades. a situation usually encountered in every day-life is the earthquake excitation which...
Three-Dimensional Cohesive Modeling of Curved Crack Growth in Quasi-brittle Material Using Adaptive Technique
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
Prediction of crack growth is one of the greatest achievements of continuum mechanics in 20th century. However, in spite of Griffith’s achievements, nowadays lots of subjects remain unchallenged in the field of Fracture Mechanics. Concrete and asphalt concrete are two of the most popular material in civil engineering and crack growth prediction in these materials are very important. Cohesive crack model is one of the models which is used for prediction of crack growth in quasi-brittle material such as concrete and it has been used widely in recent years because of simplicity and good agreement with experiment.The aim of this thesis is three-dimensional static and dynamic cohesive modeling of...