Loading...
Search for: ghanavati--r
0.103 seconds

    Corrigendum to “Amperometric inhibition biosensor for the determination of cyanide” (Sensors #x0026; Actuators: B. Chemical (2014) 190 (858–864), (S0925400513010964), (10.1016/j.snb.2013.09.055))

    , Article Sensors and Actuators, B: Chemical ; Volume 297 , 2019 ; 09254005 (ISSN) Ghanavati, M ; Roosta Azad, R ; Mousavi, S. A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The authors regret Acknowledgement: The authors would like to express his gratitude to Iran National Science Foundation (INSF) for supporting this research under grant number 92037628. The authors would like to apologise for any inconvenience caused. © 2019 Elsevier B.V  

    Experimental and numerical investigation of the effect of laser input energy on the mechanical behavior of stainless steel and polyamide joint in the LAMP joining method

    , Article International Journal of Advanced Manufacturing Technology ; Volume 113, Issue 11-12 , 2021 , Pages 3585-3597 ; 02683768 (ISSN) Ghanavati, R ; Ranjbarnodeh, E ; Shoja Razavi, R ; Pircheraghi, G ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The present study investigated the effect of laser input energy on the quality and mechanical behavior of a 304 stainless steel–polyamide 6 joint in the laser-assisted metal and polymer direct joining (LAMP) method experimentally and numerically. After the proposed heat transfer model was validated, it was determined whether there was an optimal amount of laser input energy that could produce a joint with favorable quality and mechanical behavior. Among different laser input energies used in this study, 28-J/mm energy can provide more uniform and extensive wetting of the metal surface by the polymer, while excessive polymer degradation in the joint zone was prevented. As a result, an optimal... 

    The effect of laser pre-oxidation of stainless steel on joining to polyamide by the LAMP method

    , Article Kovove Materialy ; Volume 61, Issue 2 , 2023 , Pages 91-101 ; 0023432X (ISSN) Ghanavati, R ; Ranjbarnodeh, E ; Shoja Razavi, R ; Pircheraghi, G ; Sharif University of Technology
    Institute of Materials and Machine Mechanics, Slovak Academy of Sciences  2023
    Abstract
    Among the factors affecting the efficiency of laser-assisted metal and polymer (LAMP) joints, the surface condition of the joint components is one of the most important ones. So, the present study explored the effect of laser pre-oxidation of stainless steel 304 (SS304), as a novel pretreatment method, on SS304/polyamide 6 joint strength. The assessments revealed that in spite of the potential of surface pre-oxidation of SS304 for improving joint strength, the strength of the joint was reduced by ∼ 25 % in practice because, firstly, the wettability of the metal by the polymer was reduced due to the reduction of heat transfer by the metal in the preoxidized zone and secondly, the oxide layer... 

    COVID-19 diagnosis using capsule network and fuzzy c -means and mayfly optimization algorithm

    , Article BioMed Research International ; Volume 2021 , 2021 ; 23146133 (ISSN) Farki, A ; Salekshahrezaee, Z ; Mohammadi Tofigh, A ; Ghanavati, R ; Arandian, B ; Chapnevis, A ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    The COVID-19 epidemic is spreading day by day. Early diagnosis of this disease is essential to provide effective preventive and therapeutic measures. This process can be used by a computer-aided methodology to improve accuracy. In this study, a new and optimal method has been utilized for the diagnosis of COVID-19. Here, a method based on fuzzy C-ordered means (FCOM) along with an improved version of the enhanced capsule network (ECN) has been proposed for this purpose. The proposed ECN method is improved based on mayfly optimization (MFO) algorithm. The suggested technique is then implemented on the chest X-ray COVID-19 images from publicly available datasets. Simulation results are... 

    Simulating of Droplet Formation and Calculation of Interfacial Tension by Microfluidic Method

    , M.Sc. Thesis Sharif University of Technology Ghanavati, Ashkan (Author) ; Mohammadi, Ali Asghar (Supervisor)
    Abstract
    Emulsions are the intermittent dispersion of liquid droplets that have many applications such as polymerization, dyeing, cosmetics, food industry, etc. Droplets can be created in a variety of ways, but the most important point in emulsification and the greatest efficiency of its applications is when the formed droplets are uniform. In the emulsification process, there is a key parameter called interfacial tension, which affects the behavior of the formed droplets, such as their stability and morphology, and its precise measurement is very effective in the quality control of the mentioned applications. Be. In this research, droplet formation in microfluidic systems due to uniform droplet... 

    Cooperative and Distributed Control of Gas Transmission Networks Based on Nonlinear Model Predictive Control

    , M.Sc. Thesis Sharif University of Technology Ghanavati, Reza (Author) ; Bozorgmehry Boozarjomehry, Ramin (Supervisor)
    Abstract
    Identification and control of nonlinear systems have been always such important subjects based on nonlinearities of many processes. For instance, identification and control of gas transmission networks can be mentioned as one of the challenging problems related to their complexity and existence of different variables. The purpose of this project is identification of a nonlinear model for defining a gas transmission network and implementing a model predictive control algorithm based on identified model. Hence, first, a volterra model is implemented for identification of a pH neutralization process and then, that model is used for identification of a gas transmission network. Finally, by... 

    Control of an anaerobic bioreactor using a fuzzy supervisory controller

    , Article Journal of Process Control ; Volume 103 , 2021 , Pages 87-99 ; 09591524 (ISSN) Ghanavati, M. A ; Vafa, E ; Shahrokhi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present work, a fuzzy supervisory control approach combined with an adaptive model predictive controller (AMPC), has been proposed to maximize the productivity of an anaerobic digestion (AD) process, while keeping the operation stable. In the proposed hierarchal control strategy, the set-point of the inner loop is provided by a supervisory controller. In the inner loop an AMPC has been applied to achieve the desired methane production rate by manipulating the feed flow rate. The AMPC is designed based on the auto-regressive moving average (ARMA) model whose parameters are updated at each sampling time to make the controller more robust against uncertainties and external loads. In the... 

    Effects of asphaltene content and temperature on viscosity of Iranian heavy crude oil: Experimental and modeling study

    , Article Energy and Fuels ; Volume 27, Issue 12 , 2013 , Pages 7217-7232 ; ISSN: 08870624 Ghanavati, M ; Shojaei, M. J ; Ahmad Ramazani, S. A ; Sharif University of Technology
    2013
    Abstract
    Heavy and extra heavy crude oils usually have a high weight percentage of asphaltene, which could induce many problems during production to refining processes. Also, asphaltene has the main role on the high viscosity of the heavy and extra heavy crude oils. In this paper, the effects of asphaltene characteristics on the crude oil rheological properties have been experimentally and theoretically investigated using different classes of the suspension models. For experimental investigation, the asphaltene was first precipitated from the original heavy crude oil and then 10 well-defined reconstituted heavy oil samples are made by dispersing the asphaltene into the maltene (i.e., deasphalted... 

    Experimental Studies on the Application of Biosensor for Detection of Toxic Compound

    , M.Sc. Thesis Sharif University of Technology Ghanavati, Mehdi (Author) ; Roosta Azad, Reza (Supervisor) ; Musavi, Abbas (Co-Advisor)
    Abstract
    In this research, an amperometric inhibition biosensor for the detection of cyanide has been fabricated by immobilization of the horseradish peroxidase (HRP) on the surface of glassy carbone electrode (GCE). Chitosan/acrylamide was applied for immobilization of HRP on the working electrode. All electrochemical measurement were carried out with three electrode: Ag/AgCl electrode as reference electrode, GCE as working electrode and platinium electrode as counter electrode which immersed in phosphate buffer solution. The amperometric measurement was done at an applied potential of -100 mV versus Ag/AgCl with a scan rate of 100 mV in the presence of hydroquinone as electron mediator and... 

    Simulation and Control of Anaerobic Reactors

    , M.Sc. Thesis Sharif University of Technology Ghanavati, Mohammad Amin (Author) ; Shahrokhi, Mohammad (Supervisor) ; Vafa, Ehsan (Supervisor)
    Abstract
    Anaerobic digestion of waste and wastewater has attracted researchers’ attention due to its important effect on reducing greenhouse gas emissions and reducing the level of environmental pollution and production of methane as a renewable energy source. This process is highly sensitive and can become unstable due to the presence of complex biochemical reactions and containing various types of chemical in it. In order to understand and improve the performance of this process, modeling and design of an appropriate control strategy is needed. ADM1 is the most accurate model for this process which is used in this study to describe and simulate the anaerobic reactor. Constrained and unconstrained... 

    Simulation and Control of Anaerobic Reactors

    , M.Sc. Thesis Sharif University of Technology Ghanavati, Mohammad Amin (Author) ; Shahrokhi, Mohammad (Supervisor) ; Vafa, Ehsan (Supervisor)
    Abstract
    Anaerobic digestion of waste and wastewater has attracted researchers’ attention due to its important effect on reducing greenhouse gas emissions and reducing the level of environmental pollution and production of methane as a renewable energy source. This process is highly sensitive and can become unstable due to the presence of complex biochemical reactions and containing various types of chemical in it. In order to understand and improve the performance of this process, modeling and design of an appropriate control strategy is needed. ADM1 is the most accurate model for this process which is used in this study to describe and simulate the anaerobic reactor. Constrained and unconstrained... 

    Effect ­­­­­of ultrasonic irradiation treatment on rheological behaviour of extra heavy crude oil: A solution method for transportation improvement

    , Article Canadian Journal of Chemical Engineering ; Volume 95, Issue 1 , 2017 , Pages 83-91 ; 00084034 (ISSN) Rahimi, M. A ; Ramazani S. A, A ; Alijani Alijanvand, H ; Ghazanfari, M. H ; Ghanavati, M ; Sharif University of Technology
    Wiley-Liss Inc  2017
    Abstract
    The highly viscous property of heavy oil often causes problems in its transportation in pipelines. Mixing heavy oil with light oil as well as ultrasound treatment are viable solutions to this problem. In this study, extra heavy crude oil samples were first diluted with 0, 0.05, 0.1, and 0.15 mL/mL (0, 5, 10, and 15 vol%) of a light crude oil; then the mixture was irradiated by ultrasonic waves for 0, 5, 10, 15, and 20 min; finally the viscous shear functions of all mixtures was measured at different values of shear rate at different temperature levels. The results revealed that the minimum viscosity of the diluted extra heavy crude oil samples was obtained at 10 min of ultrasonic... 

    Network vulnerability analysis through vulnerability take-grant model (VTG)

    , Article 7th International Conference on Information and Communications Security, ICICS 2005, Beijing, 10 December 2005 through 13 December 2005 ; Volume 3783 LNCS , 2005 , Pages 256-268 ; 03029743 (ISSN); 3540309349 (ISBN); 9783540309345 (ISBN) Shahriari, H. R ; Sadoddin, R ; Jalili, R ; Zakeri, R ; Omidian, A. R ; Sharif University of Technology
    2005
    Abstract
    Modeling and analysis of information system vulnerabilities helps us to predict possible attacks to networks using the network configuration and vulnerabilities information. As a fact, exploiting most of vulnerabilities result in access rights alteration. In this paper, we propose a new vulnerability analysis method based on the Take-Grant protection model. We extend the initial Take-Grant model to address the notion of vulnerabilities and introduce the vulnerabilities rewriting rules to specify how the protection state of the system can be changed by exploiting vulnerabilities. Our analysis is based on a bounded polynomial algorithm, which generates the closure of the Take-Grant graph... 

    Sequence dependence of the binding energy in chaperone-driven polymer translocation through a nanopore

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 83, Issue 1 , January , 2011 ; 15393755 (ISSN) Abdolvahab, R. H ; Ejtehadi, M. R ; Metzler, R ; Sharif University of Technology
    2011
    Abstract
    We study the translocation of stiff polymers through a nanopore, driven by the chemical-potential gradient exerted by binding proteins (chaperones) on the trans side of the pore. Bound chaperones prevent backsliding through the pore and, therefore, partially rectify the polymer passage. We show that the sequence of chain monomers with different binding affinity for the chaperones significantly affects the translocation dynamics. In particular, we investigate the effect of the nearest-neighbor adjacency probability of the two monomer types. Depending on the magnitude of the involved binding energies, the translocation speed may either increase or decrease with the adjacency probability. We... 

    First passage time distribution of chaperone driven polymer translocation through a nanopore: Homopolymer and heteropolymer cases

    , Article Journal of Chemical Physics ; Volume 135, Issue 24 , 2011 ; 00219606 (ISSN) Abdolvahab, R. H ; Metzler, R ; Ejtehadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Péclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Péclet number. We investigate the effect of the chaperone size on... 

    Reply: Abedpour, asgari, and tabar

    , Article Physical Review Letters ; Volume 106, Issue 20 , 2011 ; 00319007 (ISSN) Abedpour, N ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
    2011

    Irreversibility in response to forces acting on graphene sheets

    , Article Physical Review Letters ; Volume 104, Issue 19 , May , 2010 ; 00319007 (ISSN) Abedpour, N ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
    2010
    Abstract
    The amount of rippling in graphene sheets is related to the interactions with the substrate or with the suspending structure. Here, we report on an irreversibility in the response to forces that act on suspended graphene sheets. This may explain why one always observes a ripple structure on suspended graphene. We show that a compression-relaxation mechanism produces static ripples on graphene sheets and determine a peculiar temperature Tc, such that for T

    Analysis of design goals of cryptography algorithms based on different components

    , Article Indonesian Journal of Electrical Engineering and Computer Science ; Volume 23, Issue 1 , 2021 , Pages 540-548 ; 25024752 (ISSN) Molk, A.M.N.G ; Aref, M. R ; Khorshiddoust, R. R ; Sharif University of Technology
    Institute of Advanced Engineering and Science  2021
    Abstract
    Cryptography algorithms are a fundamental part of a cryptographic system that is designed and implemented to increase information security. They are the center of attention of experts in the information technology domains. Although the cryptography algorithms are implemented to attain the goals such as confidentially, integrity, and authenticity of designing, but other matters that must be noticed by designers include speed, resource consumption, reliability, flexibility, usage type, and so on. For the useful allocation of hardware, software, and human resources, it is important to identify the role of each of the factors influencing the design of cryptographic algorithms to invest in the... 

    Conservation of statistical results under the reduction of pair-contact interactions to solvation interactions

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 72, Issue 6 , 2005 ; 15393755 (ISSN) Radja, N.H ; Farzami, R. R ; Ejtehadi, M. R ; Sharif University of Technology
    2005
    Abstract
    We show that the hydrophobicity of sequences is the leading term in Miyazawa-Jernigan interactions. Being the source of additive (solvation) terms in pair-contact interactions, they were used to reduce the energy parameters while resulting in a clear vector manipulation of energy. The reduced (additive) potential performs considerably successful in predicting the statistical properties of arbitrary structures. The evaluated designabilities of the structures by both models are highly correlated. Suggesting geometrically nondegenerate vectors (structures) as proteinlike structures, the additive model is a powerful tool for protein design. Moreover, a crossing point in the log-linear diagram of... 

    Multifunctional hyperelastic structured surface for tunable and switchable transparency

    , Article Applied Sciences (Switzerland) ; Volume 11, Issue 5 , 2021 , Pages 1-11 ; 20763417 (ISSN) Mahabadi, R. K ; Goudarzi, T ; Fleury, R ; Naghdabadi, R ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    We leverage the crucial hyperelastic properties of a multifunctional structured surface to optimize the reconfigurability of the electromagnetic transmission under large nonlinear mechanical deformations. This multiphysics, multifunctional, hyperelastic structured surface (HSS) offers two simultaneous intriguing functionalities; tunability and switchability. It is made of copper reso-nators and a Polydimethylsiloxane (PDMS) substrate, which is one of the most favorable deformable substrates due to its hyperelastic behavior. The proposed HSS is fabricated via an original cost-effective technique and the multiphysics functionalities are captured in both experimental tests and numerical...