Loading...
Search for: ghasemi-osgouie--k
0.139 seconds

    Genetic algorithm based optimization for dual-arm cam-lock robot configuration

    , Article 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Zurich, 4 September 2007 through 7 September 2007 ; December , 2007 ; 1424412641 (ISBN); 9781424412648 (ISBN) Ghasemi Osgouie, K ; Meghdari, A ; Sohrabpour, S ; Salmani Jelodar, M ; Sharif University of Technology
    2007
    Abstract
    Cooperative systems have been extensively investigated in literature. Herein the criteria and implementation for finding the optimal configuration of the Dual-Arm Cam-Lock (DACL) robot manipulators at a specific point with the objective to optimize the applicable task-space force in a desired direction are addressed. The DACL robot manipulators are reconfigurable arms formed by two parallel cooperative manipulators. Some of their joints may lock into each other. Therefore, the arms normally operate redundantly. However, when higher structural stiffness is needed these two arms can lock into each other in specific joints and loose some degrees of freedom. The dynamics of the DACL robot is... 

    Mathematical modeling of dermal wound healing: A numerical solution

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010, Singapore ; Volume 2 , 2010 , Pages 153-156 ; 9781424455850 (ISBN) Azizi, A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Though wound healing process is well-researched, this area is poorly known. One reason is that all interactions have not been discovered, the main reason, though, is that the involved processes interact in a very complicated manner with nonlinear feedback. Such complex feedback mechanisms can be easily addressed by mathematical modeling. This paper contains a review of the mathematical modeling of cell interaction with extracellular matrix components during the process of dermal wound healing with focusing on remodeling phase. The models are of partial differential equation type and solved by numerical method  

    Modeling of forced dermal wound healing using intelligent techniques

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010, Singapore ; Volume 2 , 2010 , Pages 207-211 ; 9781424455850 (ISBN) Azizi, A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Wound healing is a complex biological process dependent on multiple variables: tissue oxygenation, wound size, contamination, etc. Many of these factors depend on multiple factors themselves. Mechanisms for some interactions between these factors are still unknown but it is generally accepted that collagen synthesis, accumulation and organization are increased by mechanical stimuli, resulting in a forced healing process which improves mechanical properties of the damaged tissue. In this paper we focus on the neural networks and regard them as function approximators, and attempt to simulate remodeling phase of dermal wound healing process using neural networks as an intelligent technique  

    Dermal wound healing-remodeling phase: A biological review

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010, Singapore ; Volume 2 , 2010 , Pages 88-90 ; 9781424455850 (ISBN) Azizi, A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Though wound healing process is well-researched, this area is poorly known. One reason is that all interactions have not been discovered, the main reason, though, is that the involved processes interact in a very complicated manner with nonlinear feedback. Such complex feedback mechanisms can be easily addressed by mathematical modeling. This paper contains a review of the mathematical modeling of cell interaction with extracellular matrix components during the process of dermal wound healing with focusing on remodeling phase. The models are of partial differential equation type and solved by finite element method  

    Kinematic effects of gimbal joints on a 3URU parallel manipulator

    , Article ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2012 ; Volume 3 , 2012 , Pages 205-210 ; 9780791844861 (ISBN) Baghi, S ; Razban, F ; Osgouie, K. G ; Sharif University of Technology
    2012
    Abstract
    Gimbal transmissions are non-linear direct transmissions and can be used in robotic arms replacing the traditional revolute joints. They offer potential advantages for critical cases such as joint space and task space singularities or where a different mechanical advantage is needed compared to what traditional revolute joints provide. This can be obtained by properly adjusting the different parameters of Gimbal joints used in different joints of the manipulator (such as their offset angle and/or chamfer angle). In this paper the concept of Gimbal mechanism as a joint is investigated. Then, as an example, Gimbal joints are used to replace the basic revolute joints of a 3-UPU parallel... 

    Design optimization of gimbal robotic joints based on task space manipulability

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 3 , July , 2010 , Pages 567-572 ; 9780791849170 (ISBN) Mohammadi, F ; Hemmatian, I ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Featuring a nonlinear novel design, Gimbal transmission, is a replacement for traditional robotic joints like gearboxes and revolute joints. This mechanism is one of the most recent types of nonlinear direct transmission (DT) methods in robots. As an alternative for traditional drive methodologies - herein called direct drive transmission (DD) methods, DT provides dynamic coupling and joint interaction attenuation while its capability to be adjusted for a desired task space point, smooth input-output characteristic, and varying reduction ratio lead to a desired force and motion behavior for the whole manipulator. In this paper, design optimization of a gimbal mechanism used as a replacement... 

    Manipulability analysis for gimbal driven robotic arms

    , Article 2009 IEEE International Conference on Robotics and Biomimetics, ROBIO 2009, 19 December 2009 through 23 December 2009 ; 2009 , Pages 1039-1044 ; 9781424447756 (ISBN) Mohammadi, F ; Hemmatian, I ; Ghaem Osgouie, K ; Sharif University of Technology
    2009
    Abstract
    Gimbal transmissions are non-linear direct transmissions and can be used in robotic arms replacing the traditional revolute joints. To investigate manipulability of robotic manipulators, the classical criterion of Manipulability Ellipsoid has been formulated. Thus by keeping a constant norm for robot joint torques vector, the effects of replacing some traditional revolute joints in robotic arms with Gimbal transmissions, have been analyzed. The results show that the magnitude of the maximum force applicable when employing Gimbal transmission can be considerably larger. Also, the joint angles in which this maximum occurs, can be adjusted, thanks to the behavior of Gimbal transmission. Two... 

    Neural networks control of autonomous underwater vehicle

    , Article ICMEE 2010 - 2010 2nd International Conference on Mechanical and Electronics Engineering, Proceedings, 1 August 2010 through 3 August 2010 ; Volume 2 , August , 2010 , Pages V2117-V2121 ; 9781424474806 (ISBN) Amin, R ; Khayyat, A. A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    This paper describes a neural network controller for autonomous underwater vehicles (AUVs). The designed online multilayer perceptron neural network (OMLPNN) calculates forces and moments in earth fixed frame to eliminate the tracking errors of AUVs whose dynamics are highly nonlinear and time varying. Another OMLPNN has been designed to generate an inverse model of AUV, which determine the appropriate propeller's speed and control surfaces' angles receiving the forces and moments in the body fixed frame. The designed approximation based neural network controller with the use of the backpropagation learning algorithm has advantages and robustness to control the highly nonlinear dynamics of... 

    The design of PIP controller for a thermal system with large time delay

    , Article World Academy of Science, Engineering and Technology ; Volume 32 , 2009 , Pages 890-894 ; 2010376X (ISSN) Zareh, S. H ; Sarrafan, A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2009
    Abstract
    This paper will first describe predictor controllers when the proportional-integral-derivative (PID) controllers are inactive for procedures that have large delay time (LDT) in transfer stage. Therefore in those states, the predictor controllers are better than the PID controllers, then compares three types of predictor controllers. The value of these controller's parameters are obtained by trial and error method, so here an effort has been made to obtain these parameters by Ziegler-Nichols method. Eventually in this paper Ziegler-Nichols method has been described and finally, a PIP controller has been designed for a thermal system, which circulates hot air to keep the temperature of a... 

    Optimization of kinematic redundancy and workspace analysis of a dual-arm cam-lock robot

    , Article Robotica ; Volume 34, Issue 1 , 2016 , Pages 23-42 ; 02635747 (ISSN) Rezaeian Jouybari, B ; Ghaemi Osgouie, K ; Meghdari, A ; Sharif University of Technology
    Cambridge University Press  2016
    Abstract
    In this paper, the problem of obtaining the optimal trajectory of a Dual-Arm Cam-Lock (DACL) robot is addressed. The DACL robot is a reconfigurable manipulator consisting of two cooperative arms, which may act separately. These may also be cam-locked in each other in some links and thus lose some degrees of freedom while gaining higher structural stiffness. This will also decrease their workspace volume. It is aimed to obtain the optimal configuration of the robot and the optimal joint trajectories to minimize the consumed energy for following a specific task space path. The Pontryagin's Minimum Principle is utilized with a shooting method to resolve kinematic redundancy. Numerical examples... 

    Intelligent mobile robot navigation in an uncertain dynamic environment

    , Article Applied Mechanics and Materials ; Volume 367 , 2013 , Pages 388-392 ; 16609336 (ISSN) ; 9783037857885 (ISBN) Azizi, A ; Entesari, F ; Osgouie, K. G ; Cheragh, M ; Sharif University of Technology
    2013
    Abstract
    This paper presents a modified sensor-based online method for mobile robot navigation generating paths in dynamic environments. The core of the navigation algorithm is based on the velocity obstacle avoidance method and the guidance-based tracking algorithm. A fuzzy decision maker is designed to combine the two mentioned algorithms intelligently. Hence the robot will be able to decide intelligently in various situations when facing the moving obstacles and moving target. A noble noise cancellation algorithm using Neural Network is designed to navigate the robot in an uncertain dynamic environment safely. The results show that the robot can track a moving target while maneuvering safely in... 

    Optimum waist of localized basis functions in truncated series employed in some optical applications

    , Article Applied Optics ; Volume 49, Issue 8 , 2010 , Pages 1210-1218 ; 1559128X (ISSN) Ghasemi, F ; Mehrany, K ; Sharif University of Technology
    2010
    Abstract
    The waist parameter is a particularly important factor for functional expansion in terms of localized orthogonal basis functions. We present a systematic approach to evaluate an asymptotic trend for the optimum waist parameter in truncated orthogonal localized bases satisfying several general conditions. This asymptotic behavior is fully introduced and verified for Hermite - Gauss and Laguerre-Gauss bases. As a special case of importance, a good estimate for the optimum waist in projection of discontinuous profiles on localized basis functions is proposed. The importance and application of the proposed estimation is demonstrated via several optical applications  

    Introducing neural networks as a computational intelligent technique

    , Article Applied Mechanics and Materials ; Vol. 464 , 2014 , pp. 369-374 ; ISSN: 16609336 Azizi, A ; Entessari, F ; Osgouie, K. G ; Rashnoodi, A. R ; Sharif University of Technology
    2014
    Abstract
    Neural networks have been applied very successfully in the identification and control of dynamic systems. The universal approximation capabilities of the multilayer perceptron have made it a popular choice for modeling nonlinear systems and for implementing general-purpose nonlinear controllers. In this paper we try to model and control the mass-spring-damper mechanism as a 1 DOF system using neural networks. The control architecture used in this paper is Model reference controller (MRC) as one of the popular neural network control architectures  

    Semi-active vibration control of an eleven degrees of freedom suspension system using neuro inverse model of magnetorheological dampers

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 8 , 2012 , Pages 2459-2467 ; 1738494X (ISSN) Zareh, S. H ; Abbasi, M ; Mahdavi, H ; Osgouie, K. G ; Sharif University of Technology
    Springer  2012
    Abstract
    A semi-active controller-based neural network for a suspension system with magnetorheological (MR) dampers is presented and evaluated. An inverse neural network model (NIMR) is constructed to replicate the inverse dynamics of the MR damper. The typical control strategies are linear quadratic regulator (LQR) and linear quadratic gaussian (LQG) controllers with a clipped optimal control algorithm, while inherent time-delay and non-linear properties of MR damper lie in these strategies. LQR part of LQG controller is also designed to produce the optimal control force. The LQG controller and the NIMR models are linked to control the system. The effectiveness of the NIMR is illustrated and... 

    The select of a permanent magnet brushed DC motor with optimal controller for providing propellant of @home mobile robot

    , Article 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010, 4 August 2010 through 7 August 2010 ; August , 2010 , Pages 1137-1141 ; 9781424451418 (ISBN) Zareh, S. H ; Khosroshahi, M ; Abbasi, M ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    This paper first will describe @Home Mobile Robot and DC motors. In continuous, is designed a Direct current (DC) motor for special task due to specific speed diagram for considered robot. This robot wants to work in intermittent operation condition. Finally is done a speed control on a selected permanent magnet brushed DC motor using of Linear-Quadratic-Regulator (LQR), Linear-Quadratic-Gaussian (LQG) and Fuzzy logic controllers  

    Optimal configuration of a 4-DOF dual-arm cam-lock manipulator

    , Article 31st Mechanisms and Robotics Conference, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007, Las Vegas, NV, 4 September 2007 through 7 September 2007 ; Volume 8 PART B , 2008 , Pages 1101-1107 ; 0791848027 (ISBN); 9780791848029 (ISBN); 0791848094 (ISBN); 9780791848098 (ISBN) Osgouie, K. G ; Meghdari, A ; Sohrabpour, S ; Jelodar, M. S ; Sharif University of Technology
    2008
    Abstract
    The Dual-Arm Cam-Lock (DACL) robot manipulators are reconfigurable arms formed by two parallel cooperative manipulators. Some of their joints may lock into each other. Therefore, the arms normally operate redundantly. However, when higher structural stiffness is needed these two arms can lock into each other in specific joints and loose some degrees of freedom. In this paper, the dynamics of the DACL robot is discussed and parametrically formulated. On the other hand, the criteria and implementation of genetic algorithm (GA) to optimize the configuration of DACL robot manipulators at a specific point with the objective to maximize the cooperatively applicable task-space force in a desired... 

    Pore control in SMA NiTi scaffolds via space holder usage

    , Article Materials Science and Engineering C ; Volume 32, Issue 5 , 2012 , Pages 1266-1270 ; 09284931 (ISSN) Ghasemi, A ; Hosseini, S. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    Porous NiTi shape memory alloy (SMA) was fabricated by sintering of compressed constituent elements pre-mixed with NaCl or urea spacer holders. Effect of spacer to metal volume-ratio (r S) on shape, size, distribution and openness of the voids was probed by optical metallography, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Differential scanning calorimetry (DSC) was used to determine the SMA transformation temperatures. Controllable void geometry helping osteoblast proliferation and bone cell growth was gained by addition of the spacers. At r S = 0.7, percentage of the open pores reached 52% while at r S = 1.43, interconnected pores with 200 to 500 μm diameter were... 

    Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma

    , Article Biomaterials Research ; Volume 24, Issue 1 , 2020 Ghasemi Goorbandi, R ; Mohammadi, M. R ; Malekzadeh, K ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Genistein (C15H10O5) is a soy isoflavone with anti-cancer properties such as inhibition of cell growth, proliferation and tumor invasion, but effective dosage against hematopoietic malignant cells was not in non-toxic range. This property cause to impede its usage as chemotherapeutic agent. Therefore, this hypothesis raised that synthesizing biocompatible nanoparticle could assist to prevail this struggle. Methods: Genistein covalently attached on Fe3O4 nanoparticles decorated with carboxymethylated chitosan to fabricate Fe3O4-CMC-genistein in alkaline circumstance. This obtained nanoparticles were evaluated by TEM, DLS, FTIR, XRD and VSM and its anti-cancer effect by growth rate... 

    Interference alignment for the K-User MIMO interference channel

    , Article IEEE Transactions on Information Theory ; 2021 ; 00189448 (ISSN) Ghasemi, A ; Seyed Motahari, A ; Khandani, A. K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    We consider the K-user Multiple Input Multiple Output (MIMO) Gaussian interference channel with M antennas at each transmitter and N antennas at each receiver. It is assumed that channel coefficients are constant real numbers and are available at all transmitters and at all receivers. The main objective of this paper is to characterize the number of Degrees of Freedom (DoF) of this channel. Using the real interference alignment technique introduced in [20], we show that MN/M+NK degrees of freedom can be achieved for almost all channel realizations. Also, a new upper-bound on the DoF of this channel is provided. This upper-bound coincides with our achievable DoF for K ≥ Ku≜M+N/gcd(M;N), where... 

    Interference alignment for the k-user MIMO interference channel

    , Article IEEE Transactions on Information Theory ; Volume 68, Issue 3 , 2022 , Pages 1401-1411 ; 00189448 (ISSN) Ghasemi, A ; Motahari, A. S ; Khandani, A. K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    We consider the K-user Multiple Input Multiple Output (MIMO) Gaussian interference channel with M antennas at each transmitter and N antennas at each receiver. It is assumed that channel coefficients are constant real numbers and are available at all transmitters and at all receivers. The main objective of this paper is to characterize the number of Degrees of Freedom (DoF) of this channel. Using the real interference alignment technique introduced in Motahari et al., 2014, we show that MN M+N K degrees of freedom can be achieved for almost all channel realizations. Also, a new upper-bound on the DoF of this channel is provided. This upper-bound coincides with our achievable DoF for K K u...