Loading...
Search for: ghasemi-rahni--hamid
0.109 seconds

    Improvement of Communication Cost and Waiting Time Trade off in Content Delivery Networks

    , M.Sc. Thesis Sharif University of Technology Ghasemi Rahni, Hamid (Author) ; Jafari Siavoshani, Mahdi (Supervisor)
    Abstract
    By increasing the use of Internet and sharing information in this platform, servers are equipped with more robust hardware and a wider bandwidth network. But the growth of data and services is such that a server, no matter how powerful, does not have the ability to respond all users! Several servers are used to solve this problem. Data centers, content delivery networks, and so on are emerged depending on types of service. One of the important issues in these systems is how to distribute loads between servers in a proportional manner. In this thesis, we first examine the relationship between cost and response time on user requests. Cost can be considered as a communication cost or financial... 

    Application of Lattice Codes Over Channels with State

    , M.Sc. Thesis Sharif University of Technology Ghasemi-Goojani, Shahab (Author) ; Behroozi, Hamid (Supervisor)
    Abstract
    Although in the network information theory most of results are based on applying random codes, one of the important challenges is to design linear structured codes that achieves the performance close to the performance of random codes. Recently, it is shown that lattice codes can be designed as good codes for quantization and also capacity-achieving in additive white Gaussian noise (AWGN) channel. Due to such a good performance, lattice codes can be designed properly and applied in various problems in network information theory.In this work, we study the performance of lattice codes for the following problems:1. Gaussian multiple access channel (MAC) with state: A joint source channel coding... 

    Synthesis of Selected Pyridazine-based Organic Compounds and Investigation of Their Inhibitory Effects Against Amyloid Formation

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Elham (Author) ; Kalhor, Hamid Reza (Supervisor)
    Abstract
    At the molecular level, proteins control almost all the biochemical reactions in the cells. In order for proteins to function, they must be able to fold into their unique 3D structure. Deformation of protein structure due to some environmental phenomena such as pH, high temperature, and stress may cause unfolding of proteins and finally result in formation of protein fibrils called "amyloid". Amyloid has been found in a number of human diseases such as Alzheimer, type II diabetes, and Parkinson. Recently pyridazine has been under spotlight due to its unique chemical properties such as high dipole moment and higher solubility in biological solvents. In this study, we aim at using a... 

    Wind and Turbulence Effects on Long-range Sound Propagation in Troposphere Layer

    , M.Sc. Thesis Sharif University of Technology Karimpour, Zahra (Author) ; Taeibi-rahni, Mohammad (Supervisor) ; Massah, Hamid Reza (Co-Advisor)
    Abstract
    Considering atmospheric wave propagation as a complex phenomenon, it can be represented as a function of variety of parameters such as: properties of atmosphere, boundary conditions, surface characteristics, source related parameters and etc. the aim of this work is to study the propagation of sound mechanisms in troposphere layer and numerical simulation of sound field in order to investigate the wind effect and turbulence in wave propagation. In this manner, the Green’s function parabolic equation (GFPE) is hired to solve the governing equation for sound propagation in a moving inhomogeneous atmosphere. To achieve this, a code is generated using MATLAB software to predict the long range... 

    An Investigation on the Effects of Porous Media on Propagation of Aero-acoustic Waves, Using LBM

    , M.Sc. Thesis Sharif University of Technology Oveisi, Saeed (Author) ; Tayyebi Rahni, Mohammad (Supervisor) ; Massah, Hamid Reza (Co-Advisor)
    Abstract
    With advances in technology, production and propagation of sound waves in the air has become very important. One of the main goals of study of these waves is controlling them. The environment plays the most important role in sound propagation. Therefore, the properties of the environment and their effects should be studied. One such concern studied widespread previously, is porosity and porous media effects on the properties of a fluid flow and sound waves through it. An important application of this study is sound proofing systems. In this project two-dimensional numerical simulation of aeroacoustic waves passing through a porous media is carried out, using Lattice Boltzmann Method. The aim... 

    Numerical Simulation of Bubble Cluster Dynamics, Using Lattice Boltzmann Method

    , Ph.D. Dissertation Sharif University of Technology Daemi, Mahdi (Author) ; Tayyebi Rahni, Mohammad (Supervisor) ; Massah, Hamid Reza (Co-Advisor)
    Abstract
    Bubble cluster has attracted the interests of many researches since the early twentieth century. Despite its easy generation and numerous occurrences, its study is extremely complex. Describing the dynamical behavior of bubble clusters is possible when quite a few simplifying assumptions are utilized. In other words, one can observe that with current approaches, the relevant theoretical researches are not very valuable. In this research, however, lattice Boltzmann method, a rather recent mesoscopic approach, was used to study the behavior of bubbles in a bubble cluster. Of course, this is only the beginning and there is a long way before getting close to experimental results. However, there... 

    Computational Investigation of Bubble-Shock Wave Interaction, Using Front Tracking-Ghost Fluid Method

    , M.Sc. Thesis Sharif University of Technology Razmi, Ashraf (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Massah, Hamid Reza (Co-Supervisor)
    Abstract
    Shock wave–bubble interaction is not yet fully understood, while has many important applications. Such physics for example appears in sonoluminescense phenomenon, wherein a sinusoidal pressure field causes a gas bubble to first become large and then small enough to collapse. In this complex physics, spherical shock wave also appears right before, during, and right after the bubble bursting. On the other hand, modeling the interface between the liquid and gas in such problems, in which the gas becomes compressible is challenging. In this regard, Ghost-Fluid/Front Tracking method has shown to be very practical. In this work, the Euler equations have been computationally solved to simulate the... 

    Numerical Simulation of Acoustics Wave Propagation in Bubbly Media, Using Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Salimi, Hesameddin (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Massah, Hamid Reza (Supervisor)
    Abstract
    The Phenomena of generation and propagation of pressure waves (e.g. sounds) are of fundamental importance in studying fluid dynamics. Conventional computational fluid dynamics (CFD) simulations has always been part of the investigation. On the other hand, the lattice Boltzmann method (LBM) has been developed into an alternative and promising numerical method for simulating sound propagation in heterogeneous media with complex geometries. In this project, propagation of sound waves in a liquid was simulated, using lattice Boltzmann method (LBM) and particularly phononic model. To survey effect of different viscosities on this phenomenon, the kinematic viscosity of the medium was varied and... 

    Numerical Modeling of Propagation of Sound Waves in an Inhomogeneous and Moving Medium of the Atmospheric Troposphere Layer

    , M.Sc. Thesis Sharif University of Technology Hamidzadeh, Mohammad Hossein (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Massah, Hamid Reza (Co-Advisor)
    Abstract
    Troposphere layer includes complex flows which their effects in acoustic sensors are indicated as acoustic wave noise.It is essential to analyze these complex flows to recognize how to reduce the noise. In this thesis we have perused and modeled the sound wave propagation in troposphere layer.Given data are some thermal and velocity profiles of atmospheric flowsthe assumptions are: 1- gravity waves are negligible, 2- air density depends only on altitude, 3- sound waves parabolic equation assumptions are applied. Our goal Is to find the sound pressure level originated from a sound source in troposphere layer.This thesis emphasizes on analysis, recognition and modeling of the problem. Main... 

    Computational Aeroacoustics Simulation of a Stringing Cavity

    , M.Sc. Thesis Sharif University of Technology Mazloomi Jourkouyeh, Sajjad (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Massah, Hamid Reza (Supervisor)
    Abstract
    In the present project, a stringed cavity, specifically the body of the Persian Setar, was studied using computational simulation. This study was carried out via acoustic approaches, based on structural and sound wave interactions. At first, the effects of different structural components were considered, separately. Based on vibrational modal analysis, dynamic characteristics of the elastic structure was investigated in terms of calculated vibrational normal modes. Then, the details of the whole structure was analyzed and the effects of these details on the quality of the produced sounds were investigated by applying some specific changes. The eigenmodes of Setar’s sound board and body, and... 

    Uranium Recovery From Liquid Waste of UCF Plant With Ion Exchange Resin Method in Continuous Mode

    , M.Sc. Thesis Sharif University of Technology Semnani, Fatemeh (Author) ; Samadfam, Mohammad (Supervisor) ; Sepehrian, Hamid (Supervisor) ; Ghasemi, Mohammad Reza (Co-Advisor)
    Abstract
    During various stages of processing uranium in Uranium conversion facility (UCF) in Isfahan, significant amounts of liquid waste is produced which leads to evaporation ponds. Since the concentration of uranium in evaporation ponds is relatively high, it seems to addition to environmental issues with recycled uranium from existing pools is also economically. Various physical and chemical methods for removal of uranium waste is used such as solvent extraction, ion exchange, chemical precipitation, membrane processes, etc. Each method has advantages and disadvantages. The ion exchange method, The due to lower cost, less acid pollution with organic copmpounds, convenience and high selectivity... 

    Parallelized numerical modeling of the interaction of a solid object with immiscible incompressible two-phase fluid flow

    , Article Engineering Computations (Swansea, Wales) ; Volume 34, Issue 3 , 2017 , Pages 709-724 ; 02644401 (ISSN) Ghasemi, A ; Nikbakhti, R ; Ghasemi, A ; Hedayati, F ; Malvandi, A ; Sharif University of Technology
    2017
    Abstract
    Purpose - A numerical method is developed to capture the interaction of solid object with two-phase flow with high density ratios. The current computational tool would be the first step of accurate modeling of wave energy converters in which the immense energy of the ocean can be extracted at low cost. Design/methodology/approach - The full two-dimensional Navier-Stokes equations are discretized on a regular structured grid, and the two-step projection method along with multi-processing (OpenMP) is used to efficiently solve the flow equations. The level set and the immersed boundary methods are used to capture the free surface of a fluid and a solid object, respectively. The full... 

    Oscillating pipe flow: High-resolution simulation of nonlinear mechanisms

    , Article 2006 ASME Joint U.S.- European Fluids Engineering Division Summer Meeting, FEDSM2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 1 SYMPOSIA , 2006 , Pages 1-10 ; 0791847500 (ISBN); 9780791847503 (ISBN) Ghasemi, A ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    A new perspective suitable for understanding the details of nonlinear pumping (formation of traveling shocks) inside a pressurized cavity is constructed in this paper. Full compressible axisymmetric three-dimensional Navier-Stokes equations are used as the starting point to cover all complexities of the problem that exceedingly increase for particular ranges of Mach, Reynolds and Prandtl numbers. Then a very high-order numerical method is introduced to preserve the user-defined order of accuracy for practical simulations. For removal of spurious waves, higher-order compact filters are derived. All equations are marched in time using the classical Runge-Kutta algorithm which is appropriate... 

    An optimized large-stencil approach for capturing near-PI frequencies

    , Article 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, 8 May 2006 through 10 May 2006 ; Volume 5 , 2006 , Pages 3010-3022 ; 1563478099 (ISBN); 9781563478093 (ISBN) Ghasemi, A ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2006
    Abstract
    Large-stencil schemes which their spectral properties are acceptable in the vicinity of ω = π are analyzed for the first time. A machine independent model for evaluating the efficiency of generalized time-marching finite-difference algorithms over periodic domains is developed. This model which is based on operation count reveals that for small values of Total Computational Cost(TCC), the previous low-order small-stencil schemes are more efficient while for moderate TCC, the efficiency of optimized large-stencil schemes abruptly increases. This important result is the motivation for developing optimized large-stencil schemes. The current schemes are successfully implemented in a full... 

    Numerical solution of high-frequency oscillations of a gas column using a modified lax-wendroff scheme

    , Article International Conference on Noise and Vibration Engineering 2006, ISMA 2006, Heverlee, 18 September 2006 through 20 September 2006 ; Volume 4 , 2006 , Pages 2191-2199 Ghasemi, A ; Sharif University of Technology
    Katholieke Universiteit Leuven  2006
    Abstract
    Recently, several high-order accurate methods have been developed for solving nonlinear equations governing in the high-frequency oscillations of a fluid column. If we assume that the value of Reynolds and Prandtl numbers are high enough then it is possible to neglect the effect of Stokes Layer and it has been previously shown that the calculated pressure profile obtained by solving three-dimensional axisymmetric compressible NS (Navier-Stokes) equations is in good agreement with one-dimensional adiabatic model of Ilinskii. For this particular flow which is the typical of engineering flows inside acoustical compressors, it is clear that high-resolution simulation of NS equations in higher... 

    Oscillating pipe flow: high-resolution simulation of nonlinear mechanisms

    , Article 2006 2nd ASME Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 2006 , 2006 ; 0791837831 (ISBN); 9780791837832 (ISBN) Ghasemi, A ; Sharif University of Technology
    2006
    Abstract
    A new perspective suitable for understanding the details of nonlinear pumping (formation of traveling shocks) inside a pressurized cavity is constructed in this paper. Full compressible axisymmetric three-dimensional Navier-Stokes equations are used as the starting point to cover all complexities of the problem that exceedingly increase for particular ranges of Mach, Reynolds and Prandtl numbers. Then a very high-order numerical method is introduced to preserve the user-defined order of accuracy for practical simulations. For removal of spurious waves, higher-order compact filters are derived. All equations are marched in time using the classical Runge-Kutta algorithm which is appropriate... 

    Parameters affecting turbulent film cooling reynolds-averaged navier-stokes computational simulation

    , Article Journal of Thermophysics and Heat Transfer ; Volume 20, Issue 1 , 2006 , Pages 92-100 ; 08878722 (ISSN) Mahjoob, S ; Taeibi Rahni, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2006
    Abstract
    Film cooling of surfaces appears in many applications. For instance, it is one of the most effective methods to improve the efficiency of gas turbines. As a fundamental study, two different types of film cooling (slot and discrete holes injections) are numerically simulated here. A flat surface is used to model a small portion of a gas turbine blade. Incompressible, stationary, viscous, turbulent flow is assumed using the STAR-CD software with the standard k-ε model and a cell-centered finite volume method on a nonuniform structured grid. The jet flow Reynolds number, based on the jet's hydraulic diameter, is 4.7 × 103. The study of the injection angle and the velocity ratio shows that the... 

    Computation of turbulent flow over highly curved configuration using a conventional two-equation turbulence model

    , Article 45th AIAA Aerospace Sciences Meeting 2007, Reno, NV, 8 January 2007 through 11 January 2007 ; Volume 9 , 2007 , Pages 6262-6275 ; 1563478900 (ISBN); 9781563478901 (ISBN) Zakyani, M ; Taeibi Rahni, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    A new procedure for simulating turbulent flow in three-dimensional arbitrary geometries is presented. Finite volume method using physical covariant velocities on a staggered grid arrangement was used in this investigation. This work is an extension of previous successful work to three-dimensional cases. The ability of the new algorithm was tested using a conventional two-equation turbulence model on a highly separated turbulent flow test case. The low Reynolds number k-ω turbulence model of Wilcox was utilized to evaluate its capability in modeling highly curved flows. Turbulent flow over a three-dimensional hill, which is appropriate in assessment of ability of turbulence models in... 

    Effects of non-dimensional parameters on formation and break up of cylindrical droplets

    , Article 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, HT/FED 2004, Charlotte, NC, 11 July 2004 through 15 July 2004 ; Volume 2 B , 2004 , Pages 1339-1342 Taeibi Rahni, M ; Sharafatmand, S ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    The consistent behavior of non-dimensional parameters on the formation and break up of large cylindrical droplets has been studied by direct numerical simulations (DNS). A one-fluid model with a finite difference method and an advanced front tracking scheme was employed to solve unsteady, incompressible, viscous, immiscible, multi-fluid, twodimensional Navier-Stokes equations. This time dependent study allows investigation of evolution of the droplets in different cases. For moderate values of Atwood number (AT), increasing Eotvos number (Eo) explicitly increases the deformation rate in both phenomena. Otherwise, raising the Ohnesorge number (Oh) basically amplifies the viscous effects.... 

    Computational study of parameters affecting turbulent flat plate film cooling

    , Article 2004 ASME Turbo Expo, Vienna, 14 June 2004 through 17 June 2004 ; Volume 3 , 2004 , Pages 23-32 Mahjoob, S ; Taeibi Rahni, M ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    Blade film cooling is one of the best methods to improve efficiency of gas turbines. In this work, two different methods of film cooling, namely, slot injection and discrete hole injection have been numerically studied on a flat plate. Incompressible, stationary, viscous, turbulent flow has been simulated using the FLUENT CFD code with the standard k-s model. The study of injection angle and velocity ratio show that the optimum film cooling in both methods, occurs at the jet angle of 30° but with the velocity ratio of 1.5 for slot case and 0.5 for discrete hole case. The study of jet aspect ratio in discrete hole method, shows that stretching the hole in spanwise direction increases the film...