Loading...
Search for: ghofrani--i
0.111 seconds

    Availability analysis on combustion of n-heptane and isooctane blends in a reactivity controlled compression ignition engine

    , Article Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ; Volume 232, Issue 11 , 2018 , Pages 1501-1515 ; 09544070 (ISSN) Mohebbi, M ; Reyhanian, M ; Ghofrani, I ; Aziz, A. A ; Hosseini, V ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Unfortunately, energy demands and destruction of the environment from uncontrolled manipulation of fossil fuels have increased. Climate change concerns have resulted in the rapid use of new, alternative combustion technologies. In this study, reactivity controlled compression ignition (RCCI) combustion, which can simply be exploited in internal combustion (IC) engines, is investigated. To introduce and identify extra insightful information, an exergy-based study was conducted to classify various irreversibility and loss sources. Multidimensional models were combined with the primary kinetics mechanism to investigate RCCI combustion, incorporating the second law of thermodynamics. The... 

    Supervisory control of an anaerobic digester subject to drastic substrate changes

    , Article Chemical Engineering Journal ; Volume 391 , 2020 Ghofrani Isfahani, P ; Valverde Pérez, B ; Alvarado Morales, M ; Shahrokhi, M ; Vossoughi, M ; Angelidaki, I ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Anaerobic digestion (AD) is a green technology that has been applied for many years. One of the main problems in this process is controlling these bioreactors to maximize methane production. A supervisory control strategy has been proposed to improve the methane production rate in an anaerobic digestion process while minimizing the risk of process failure in the presence of several drastic feedstock changes. The inner loop consisted of a feedback control that manipulated the feed flow rate for achieving the desirable methane production rate. A rule based control strategy was used as supervisory control loop. This controller received the total volatile fatty acids concentration in the reactor... 

    Energy, exergy, exergoeconomics, and exergoenvironmental assessment of three brine recycle humidification-dehumidification desalination systems applicable for industrial wastewater treatment

    , Article Energy Conversion and Management ; Volume 205 , 2020 Ghofrani, I ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Using zero liquid discharge systems is one of the efficient methods to reduce the negative environmental impact of the brines of the desalination systems and also to recycle the industrial wastewaters for reuse. Due to the simple fabrication process, low maintenance cost, intensive to inlet water quality, and the ability to use renewable and low-grade-heat, modified humidification-dehumidification systems may be a proper choice for the zero liquid discharge applications. Thus, in the present study, the energy, exergy, exergoeconomic, and exergoenvironmental assessment of three advanced brine recycle humidification-dehumidification systems for zero liquid discharge operation are... 

    Brine elimination by hybridization of a novel brine-recycle bubble-column humidification-dehumidification system with a multiple-effect distillation system

    , Article Energy Conversion and Management ; Volume 217 , 2020 Ghofrani, I ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Over the past decades, drastic growth in the installed capacity of seawater desalination systems has increased the energy consumption and brine discharge to the environment. However, using renewable energies and zero liquid discharge systems for minimizing these challenges is limited due to the higher fresh water cost of the systems rather than that of the conventional systems. In this research, a bubble-column humidification-dehumidification zero liquid discharge system is coupled with a multiple-effect distillation/vapor compression system in a novel way to overcome the high water cost of conventional zero liquid discharge systems. Further, the base system and the solar-powered system is... 

    Robust and efficient zero liquid discharge design strategy using four novel desalination systems: A comprehensive 4E assessment

    , Article Journal of Cleaner Production ; Volume 310 , 2021 ; 09596526 (ISSN) Ghofrani, I ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Discharging unconventional water sources having a high content of inorganic compounds is extremely destructive to the environment. In this research, four novel semi-open-air and closed-air configurations of brine-recycle humidification-dehumidification (BRHDH) systems with zero liquid discharge (ZLD) approach are presented to treat unconventional waters cost-effectively. Bubble-column humidifiers and dehumidifiers are used to have a low initial expenditure, and system multi-staging is implemented to reduce the operating expense of the configurations. The configurations are evaluated for high saline brine treatment using comprehensive energy, exergy, exergoeconomic, and exergoenvironmental... 

    Design of a Nonlinear Controller for a Bioreactor

    , M.Sc. Thesis Sharif University of Technology Ghofrani, Parisa (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Biotechnology is one of the fields that has had great advances in the past decades, and therefore controlling biological processes (bioreactors) is considered as an important issue. The purpose of current thesis is designing an adaptive controller for a bioreactor by considering input constrain and proving the stability of closed loop. A standard bioreactor has been chosen for this purpose. First a non-adaptive controller has been designed. Then an adaptive controller is designed and implemented on a bioreactor in the presence of input constraint, because in practice the system parameters are unknown. Finally by applying disturbance to the system, it has been shown that the proposed control... 

    Thermodynamic and Economic Study of the Performance Improvement of Hybrid Desalination Plants

    , Ph.D. Dissertation Sharif University of Technology Ghofrani, Iraj (Author) ; Mousavi, Ali (Supervisor)
    Abstract
    In the present study, for cost-effective brine elimination of desalination plants, a hybrid system consisting of a multiple-effect distillation unit and a humidification-dehumidification unit is proposed. The development process of the hybrid system was carried out in two main steps: 1) evaluation of electricity-driven and heat-driven humidification-dehumidification brine concentrators 2) redesigning the humidification-dehumidification unit according to the results of step one and hybridization the unit with a multiple-effect distillation system. All the steps are assessed using the energy, exergy, exergoeconomics, and exergoenvironmental tools.Among the three heat-driven and... 

    Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate

    , Article Energy ; Volume 191 , 2020 Ghofrani Isfahani, P ; Baniamerian, H ; Tsapekos, P ; Alvarado Morales, M ; Kasama, T ; Shahrokhi, M ; Vossoughi, M ; Angelidaki, I ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Lignocellulosic materials are recalcitrant to bioconversion, due to their rigid physiochemical structure. In this work, the effects of Fe2O3–TiO2 and NiO–TiO2 nanoparticles (NPs) and FeCl3 and NiCl2 salts, on the anaerobic digestion (AD) of wheat straw have been investigated. For this purpose, metal oxide-TiO2 NPs were synthesized and fully characterized. Results showed that addition of 0.252 mg of NiO–TiO2/g total solids (TS) to batch assays resulted in increase of soluble chemical oxygen demand (COD) and 67% increase in volatile fatty acids (VFAs) concentration compared to control tests during the first 4 days of experiments. These results indicate that hydrolysis and acidogenesis rates... 

    Simulation and Analysis of the Coolant Mixing Test within the Reactor Pressure Vessel of BNPP Using ANSYS CFX 18.0

    , M.Sc. Thesis Sharif University of Technology Khalvandi, Mohammad (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    Various factors, such as increasing or decreasing the heat removal from the initial circuit, or increasing the flow rate of the cooling fluid in the reactor, causes the phenomenon of the coolant mixing in the PWR reactors. In this project, the thermohydraulic test of coolant mixing has been simulated in the pressure vessel of the Bushehr nuclear reactor. In this test, the mixing of the coolant caused by the reduction of heat removal from the primary circuit by the secondary circuit is investigated. In this case, the primary circuit temperature increases in the loop where the heat removal is reduced. The most important consequence of this event is the reactivity changes at the core of the... 

    Simulation of Loop Connection of RCPs during Commissioning Test of BNPP Using RELAP 5 Code to Two or Three Operating Ones

    , M.Sc. Thesis Sharif University of Technology Zeynalian, MirHadi (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    In order to ensure the safety of the plants, a set of commissioning tests based on international standards for nuclear power plants is carried out before operation. In this research, one of the Bushehr power plant commissioning tests, the loop connection primary circuit cooling pump test, was simulated using the RELAP5 code. In this test, the effects of loop connection primary circuit pumps on the thermohydraulic parameters and the eneterance of test-related systems was evaluated. After simulating the systems related to the test and extracting the results of the stable state, were evaluated the transient results was obtained with the experimental results of the test of loop connection the... 

    Optimal policy of energy innovation in developing countries: Development of solar PV in Iran

    , Article Energy Policy ; Volume 37, Issue 3 , 2009 , Pages 1116-1127 ; 03014215 (ISSN) Shafiei, E ; Saboohi, Y ; Ghofrani, M.B ; Sharif University of Technology
    2009
    Abstract
    The purpose of this study is to apply managerial economics and methods of decision analysis to study the optimal pattern of innovation activities for development of new energy technologies in developing countries. For this purpose, a model of energy research and development (R&D) planning is developed and it is then linked to a bottom-up energy-systems model. The set of interlinked models provide a comprehensive analytical tool for assessment of energy technologies and innovation planning taking into account the specific conditions of developing countries. An energy-system model is used as a tool for the assessment and prioritization of new energy technologies. Based on the results of the... 

    Determination of the safety importance of systems of the Tehran research reactor using a PSA method

    , Article Annals of Nuclear Energy ; Volume 29, Issue 16 , 2002 , Pages 1989-2000 ; 03064549 (ISSN) Ghofrani, M. B ; Damghani, S. A ; Sharif University of Technology
    2002
    Abstract
    This paper presents the results of a research project performed to study the ranking of systems and components of the Tehran research reactor, important to safety, using a level 1 probabilistic safety assessment (PSA). The occurrence of an imbalance condition, i.e. a lack of equilibrium between heat generation and heat removal without reactor scram, was defined as the "Top Event". A fault tree technique was used to study all scenarios leading to the top event, the probability of which was shown to be 9.5E-5. It has been concluded that, objects falling onto the reactor core; operator error to shutdown the reactor while safety flapper open; and simultaneous opening of water outlet valves, are... 

    Application of PSA Methods in the Reliability Analysis of EPSS of Busherhr NPP in case of Station Black Out

    , M.Sc. Thesis Sharif University of Technology Khorrami, Vahid (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    LOOP accident is one of the most important accidents in NPPS and it leads to loss of power supply of the RCP pumps which are the main pumps of primary circuit. Subsequently trip of the rector occurs. In safety analysis, concerning worst conditions, assumes that after a small period of time, main generator of plant stops working and loss of AC power supply of all power plant loads including safety systems ocures. To control of this accident, it’s necessary to startup and load backup power supply system (EDGs) for at least one safety channels, if not, the accident moves forwards and becomes S.B.O accident which is more important accident that ends to core damage because of stops working of all... 

    Probabilistic Safety Assessment of A UF6 Production Process

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Behrooz (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    Identification of different hazards in a UF6 production process, and evaluation of the risk originated from these hazards is the main objective of this project. A number of hazards are present in a typical UF6 production process, such as leakage of chemical gases like HF and F2 and also radioactive UF6 gas release. In order to evaluate risk due to these hazards, probabilistic approach has been used. Due to lack of probabilistic safety criteria (PSC) for chemical releases, only for UF6 gas release risk assessment has been done. As a first step in PSA of this process eight groups of initiating events have been identified using HAZOP study, and for each initiating event, event tree analysis... 

    Thermal Hydraulic Analysis of Prismatic Htgr with Natural Convection Using Porous Media Approach (in Case of Lose of Forced Circulation Accident)

    , M.Sc. Thesis Sharif University of Technology Golshanee, Masoud (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    In this study, the thermal-hydraulic analysis of prismatic HTGR’s core with natural convection has been studied using porous media approach. VHTR are the new generation reactors which due to special neutron and thermo physical properties have highly inherent safety. In lose of forced circulation accident, decay heat is transferred from core to pressure vessel wall and then to water tubes in concrete wall at reactor cavity with conduction, convection and radiation automatically. In this case the high volume of decay heat is stored in graphite block with high thermal capacity and is prevented the instantaneous temperature rising.
    The aim of this study is justifying inherent safety of HTGR... 

    Experimental Investigation on Laminar Forced Convection Heat Transfer of Ferrofluids Under an Alternating Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Ghofrani, Ali (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    This research study presents an experimental investigation on forced convection heat transfer of an aqueous ferrofluid flow passing through a circular copper tube in the presence of an alternating magnetic field. The flow passes through the tube under a uniform heat flux and laminar flow conditions. The primary objective was to intensify the particle migration and disturbance of the boundary layer by utilizing the magnetic field effect on the nanoparticles for more heat transfer enhancement. Complicated convection regimes caused by interactions between magnetic nanoparticles under various conditions were studied. The process of heat transfer was examined with different volume concentrations... 

    Loss Management in Smart Distribution Systems

    , Ph.D. Dissertation Sharif University of Technology Ghofrani Jahromi, Zeinab (Author) ; Ehsan, Mehdi (Supervisor)
    Abstract
    One of the topics that has been given great consideration after restructuring and smart grid emergence, is loss management. This subject is specifically important in distribution systems, which have been reported to have 70% of the total loss in power systems. In this thesis, distribution loss is studied and its affecting factors are analyzed. Then loss optimization and loss cost allocation to distribution consumers are studeid. In order to acheive these two goals, it is neccessary for the distribution system to have the capabilities of a smart grid. The subjectof distribution reconfiguration is duiscussed as one of the loss reduction methods. Traditional reconfiguration problem trend... 

    Model-Based Simulation of Surge and Active Controller Design of an Industrial Centrifugal Compressor applied in Gas Compression Systems

    , M.Sc. Thesis Sharif University of Technology Khodaparast, Pooya (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    Efforts to model and control surge, as the underlying instability of centrifugal compressors, were conducted. Of the three major instabilities in compressors, namely chokage, stall and surge, the latter has a significant role in limiting the available range of operation in centrifugal compressors, which are the most common devices for the transportation of Natural gas. The customary method to circumvent surge, which if occurred, could impose severe, catastrophic and irreversible damages to the machine, is to avoid the zones in which it is likely to develop by means of a recycling system. These often called "surge avoidance" or "surge prevention" schemes have the benefit of high reliability,... 

    Simulation of Steam Bubble Collapse Induced Water Hammer (SBCIWH) in the Bushehr NPP Deaerator

    , M.Sc. Thesis Sharif University of Technology Saemi, Amir (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    Due to nuclear power plants’ growing roll in providing energy, analyzing probable accidents and their prevention is of vital importance. The thermal-hydraulic shock accident which happened in Bushehr nuclear power plant deaerator has been simulated in this study. Steam bubble collapsing which takes place in two phase medium by mixing steam and subcooled water leads to this kind of shock causing financial and physical irreparable damage in nuclear power plants. For carrying out this simulation, first an steady state model of the deaerator was run using RELAP5 code and then using this model and other plant’s data such as the ropert of the accident and plant’s Final Safety Analysis Report... 

    Development of an Effective Method to Support Severe Accident Management in Bushehr Nuclear Power Plant

    , Ph.D. Dissertation Sharif University of Technology Saghafi, Mahdi (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    Following Three Mile Island (TMI) accident in 1979, first severe accident (SA) in Nuclear Power Plants (NPPs), Accident Management Support Tools (AMSTs) were developed and installed in a number of NPPs. Lessons learned from Fukushima accident highlighted importance of Accident Management (AM) in mitigation severe radiological consequences after a SA and suggested reconsiderations of AM program which in turn created the need for AMSTs adaption and modernization. An efficient AMSTs should have the following principal capabilities: (1) Identification of accidents and diagnosis of the plant damage state (PDS), (2) Prediction of accident progress path and (3) Source term analysis and prediction...