Loading...
Search for: golafshani--a--a
0.124 seconds

    Friction damper for vibration control in offshore steel jacket platforms

    , Article Journal of Constructional Steel Research ; Volume 65, Issue 1 , 2009 , Pages 180-187 ; 0143974X (ISSN) Golafshani, A. A ; Gholizad, A ; Sharif University of Technology
    2009
    Abstract
    The performance of friction dampers to mitigate the wave-induced vibrations in jacket-type offshore platforms has been investigated in this study. Due to the random nature of ocean waves, a full stochastic analysis method has been used to evaluate the response of the structures equipped with these devices. A stochastic linearization technique has also been used to take the nonlinear behavior of these hysteretic dampers into account. At last, the developed mathematical formulation has been applied to evaluate the response of realistic models, and to find out the optimal values for the adjustable parameters of the friction dampers to dissipate the wave induced vibrations of the platforms. ©... 

    Passive devices for wave induced vibration control in offshore steel jacket platforms

    , Article Scientia Iranica ; Volume 16, Issue 6 A , 2009 , Pages 443-456 ; 10263098 (ISSN) Golafshani, A. A ; Gholizad, A ; Sharif University of Technology
    2009
    Abstract
    Performances of tuned mass dampers and friction dampers to mitigate the wave induced vibrations in jacket type offshore platforms have been compared in this study. Due to the random nature of ocean waves, a full stochastic analysis method has been used to evaluate the response of the structures equipped with these devices. A stochastic linearization technique has been used to take the nonlinear behavior of friction dampers into account. The developed mathematical formulation has been applied to evaluate the response of realistic models, and to find out the optimal values for the adjustable parameters of friction dampers. The results have been verified in comparison with time domain nonlinear... 

    The exact and approximate conditional spectra in the multi-seismic-sources regions

    , Article Soil Dynamics and Earthquake Engineering ; Volume 39 , August , 2012 , Pages 61-77 ; 02677261 (ISSN) Ebrahimian, H ; Azarbakht, A ; Tabandeh, A ; Akbar Golafshani, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The exact and two approximate conditional spectra are compared in this manuscript as a target spectrum for the purpose of ground motion selection. The considered site is a real offshore site located at South Pars Gas Field in the Persian Gulf region. This case study site is influenced by four major seismic area sources in which the deaggregation results confirm that many comparable seismic scenarios can be taken into account. Therefore, an alternative to the conventional approximate conditional spectrum is proposed that has a small deviation from the exact solution. In addition, the use of different conditioning status of the probabilistic seismic hazard deaggregation (i.e., occurrence... 

    Performance-based assessment of an innovative braced tube system for tall buildings

    , Article Bulletin of Earthquake Engineering ; 2017 , Pages 1-22 ; 1570761X (ISSN) Mohammadi, H ; Toufigh, V ; Golafshani, A. A ; Arzeytoon, A ; Sharif University of Technology
    2017
    Abstract
    In this paper, an innovative seismic lateral force resisting system for tall buildings is introduced. In this system, a novel supplemental part, ribbed bracing system (RBSyst), is attached to Braced Tube System, creating a modified BTS. RBSyst is a supplemental part which is attached to the conventional bracing members to eliminate buckling problem. The behavior of RBSyst under tensile force is similar to that of the conventional braces. However, in compression, it prevents the braces from buckling by length reduction. In order to evaluate the efficiency of this new BTS system by performance-based assessment, two typical 40-story tall buildings with different story modules equipped with this... 

    Experimental evaluation of pinned frame equipped with ribbed bracing system

    , Article Journal of Earthquake Engineering ; 2017 , Pages 1-21 ; 13632469 (ISSN) Mohammadi, H ; Toufigh, V ; Golafshani, A. A ; Arzeytoon, A ; Sharif University of Technology
    2017
    Abstract
    This study presents the experimental investigation of half-scale, one-story, one-bay pinned frames equipped with a ribbed bracing system (RBS). The RBS is a newly developed passive control system designed to eliminate buckling and enhance the seismic behavior of structures. Here, mechanical models of this bracing system were designed and constructed. Pinned frames equipped with the RBS were cyclically tested. The hysteretic behavior and energy absorbing capacities of the frames were evaluated. Based on the results, the full plastic capacity of the brace was achieved and no buckling occurred. The RBS frame illustrated proper hysteretic behavior and energy dissipation capacity up to 4% story... 

    Experimental evaluation of pinned frame equipped with ribbed bracing system

    , Article Journal of Earthquake Engineering ; Volume 23, Issue 8 , 2019 , Pages 1297-1317 ; 13632469 (ISSN) Mohammadi, H ; Toufigh, V ; Golafshani, A. A ; Arzeytoon, A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This study presents the experimental investigation of half-scale, one-story, one-bay pinned frames equipped with a ribbed bracing system (RBS). The RBS is a newly developed passive control system designed to eliminate buckling and enhance the seismic behavior of structures. Here, mechanical models of this bracing system were designed and constructed. Pinned frames equipped with the RBS were cyclically tested. The hysteretic behavior and energy absorbing capacities of the frames were evaluated. Based on the results, the full plastic capacity of the brace was achieved and no buckling occurred. The RBS frame illustrated proper hysteretic behavior and energy dissipation capacity up to 4% story... 

    Performance-based assessment of an innovative braced tube system for tall buildings

    , Article Bulletin of Earthquake Engineering ; Volume 16, Issue 2 , February , 2018 , Pages 731-752 ; 1570761X (ISSN) Mohammadi, H ; Toufigh, V ; Golafshani, A. A ; Arzeytoon, A ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    In this paper, an innovative seismic lateral force resisting system for tall buildings is introduced. In this system, a novel supplemental part, ribbed bracing system (RBSyst), is attached to Braced Tube System, creating a modified BTS. RBSyst is a supplemental part which is attached to the conventional bracing members to eliminate buckling problem. The behavior of RBSyst under tensile force is similar to that of the conventional braces. However, in compression, it prevents the braces from buckling by length reduction. In order to evaluate the efficiency of this new BTS system by performance- based assessment, two typical 40-story tall buildings with different story modules equipped with... 

    Torsion mitigation of existing asymmetric structures using damper

    , Article Asian Journal of Civil Engineering ; Volume 13, Issue 6 , 2012 , Pages 821-840 ; 15630854 (ISSN) Tabeshpour, M. R ; Azad, A ; Golafshani, A. A ; Mualla, I ; Sharif University of Technology
    AJCE  2012
    Abstract
    Many existing buildings are irregular in plan or elevation because of asymmetric placement of masonry infills. The stiffness of masonry infill is a considerable value relating to that of the structure. Produced torsion from eccentricity because of infill stiffness leads to extra forces and deformations in structural members and diaphragms. An appropriate alternative to solve this problem especially in existing buildings is using dampers. Dampers can enhance structural performance by reducing seismically induced lateral displacements and by reducing inelastic behavior of beams and columns. In this paper some simple models are used to show structural modeling and a conceptual discussion is... 

    Hybrid damping systems in offshore jacket platforms with float-over deck

    , Article Journal of Constructional Steel Research ; Vol. 98, Issue. 1 , 2014 , pp. 178-187 ; ISSN: 0143-974X Jafarabad, A ; Kashani, M ; Parvar, M. R. A ; Golafshani, A. A ; Sharif University of Technology
    2014
    Abstract
    Employing dampers to control wave-induced and seismic vibrations of offshore jacket platforms is an attractive method in order to mitigate fatigue and seismic damage. However, adjustable parameters of a damper are designed by considering only one type of environmental loads; either normal-condition load or extreme-condition load. So, it is important to investigate effectiveness of damping system, for both of two main categories of environmental loads. Also it is ideal for the system to have an acceptable performance in both normal and extreme conditions. The idea investigated in the current study is to use a friction damper device (FDD) and a tuned mass damper (TMD) simultaneously in... 

    Inverse vibration technique for structural health monitoring of offshore jacket platforms

    , Article Applied Ocean Research ; Volume 62 , 2017 , Pages 181-198 ; 01411187 (ISSN) Haeri, M. H ; Lotfi, A ; Dolatshahi, K. M ; Golafshani, A. A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this paper a new approach is introduced for structural health monitoring of offshore jacket platforms. The procedure uses the measured ambient vibration responses and the corresponding readable natural frequencies and mode shapes of the structural system. Since offshore platforms are composed of heavy topsides supported by jacket structures, participation of the first mode is dominant in each direction in the response of the structure under field excitations. Moreover, ambient vibrations such as wave loads and boat impacts only excite the first modes of the structure. Therefore, it is difficult to find higher modes and the pertinent frequencies by use of accelerometers data. The... 

    Semiactive viscous tensile bracing system

    , Article Journal of Structural Engineering ; Volume 135, Issue 4 , 2009 , Pages 425-436 ; 07339445 (ISSN) Rahani, E.K ; Bakhshi, A ; Golafshani, A.A ; Sharif University of Technology
    2009
    Abstract
    Structural control using energy dissipater devices is emerging as a heavily researched strategy in earthquake engineering. Among several control systems, semiactive control is usually possible and efficient. In this research, a semiactive energy dissipating bracing system based on a viscous damper is proposed. In the conventional bracing systems, it is assumed that the braces can buckle under compression. Therefore, a semiactive on-off brace strategy is implemented to improve the conventional brace performance. Further, an energy absorbing mechanism is implemented. In the proposed system, the buckling of the member is prevented by implementing a one-way valve device. The permanent story... 

    Adaptive control of structures by LMS algorithm: A comparative study

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 152, Issue 2 , 2002 , Pages 175-191 ; 09650911 (ISSN) Golafshani, A. A ; Mirdamadi, H. R ; Sharif University of Technology
    ICE Publishing Ltd  2002
    Abstract
    By using the normalised least mean squared (NLMS) algorithm, a semi-active multi-variable adaptive controller is designed for a seismically excited structure. There is no need for a large power supply. A number of valves and battery size low-power supplies will suffice. The valves control the amount of flow of a fluid through bypass on-off orifice channels in installed energy dissipating mechanisms. Each mechanism is composed of a piston attached to a A-shaped chevron wind-bracing on each floor and to a cylinder attached to the upper floor. Adaptive controller parameters are estimated by the LMS optimiser, in order to search for optimal non-classical damping coefficients of the dissipating... 

    Semi-active multivariable adaptive control of structures under earthquake excitations

    , Article Scientia Iranica ; Volume 8, Issue 1 , 2001 , Pages 38-53 ; 10263098 (ISSN) Golafshani, A. A ; Mirdamadi, H. R ; Sharif University of Technology
    Sharif University of Technology  2001
    Abstract
    In this paper, a semi-active multivariable adaptive controller is designed for a framed structure under a seismic disturbance using a filtered-x NLMS optimizer. Actuator and large power supply are not required, since just some valves and a battery-size power supply are sufficient for controlling the amount of hydraulic fluid flow through the by-pass on off-orifice channel in an energy dissipating system, which consists of a piston attached to Λ-shaped wind bracing of the building and a cylinder attached to the upper floor. It is assumed that only a rough finite element model of the structure is available. In addition, in order to search for optimal non-classical viscous damper coefficients,... 

    Experimental and numerical study on a novel ribbed bracing system

    , Article Advances in Structural Engineering ; Volume 21, Issue 9 , 2018 , Pages 1349-1360 ; 13694332 (ISSN) Golafshani, A. A ; Fallah, S ; Sahafipourfard, M. A ; Arzeytoon, A ; Toufigh, V ; Sharif University of Technology
    SAGE Publications Inc  2018
    Abstract
    In this article, the ribbed bracing system is proposed and evaluated through experimental and numerical studies. Ribbed bracing system is composed of a supplemental part with ribbed interfaces that is attached to a brace member and allows for its free length reduction to prevent the development of compressional forces responsible for buckling of the brace. Ribbed bracing system provides two different mechanisms: completely closed ribbed bracing system and improved-centering ribbed bracing system which are validated, in this study, through design, fabrication, and testing of small-scale specimens subjected to cyclic quasi-static loading. As verified by the test results, in improved-centering... 

    Retrofit of Ressalat jacket platform (Persian Gulf) using friction damper device

    , Article Journal of Zhejiang University: Science A ; Volume 12, Issue 9 , 2011 , Pages 680-691 ; 1673565X (ISSN) Komachi, Y ; Tabeshpour, M. R ; Golafshani, A. A ; Mualla, I ; Sharif University of Technology
    2011
    Abstract
    A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically active zones. A new method for quick design of friction or yielding damping devices is presented. The effectiveness of the damping system employing such FDDs in a jacket platform is evaluated numerically. The influence of key parameters of the damping system on the vibration suppression of the offshore structure is studied in detail. To examine the vibration control effectiveness of the FDD for the jacket platform, performance of the controlled structure under the seismic... 

    The fiber element technique for analysis of concrete-filled steel tubes under cyclic loads

    , Article Structural Engineering and Mechanics ; Volume 14, Issue 2 , 2002 , Pages 119-133 ; 12254568 (ISSN) Golafshani, A. A ; Aval, S. B. B ; Saadeghvaziri, M. A ; Sharif University of Technology
    Techno-Press  2002
    Abstract
    A beam-column fiber element for the large displacement, nonlinear inelastic analysis of Concrete-Filled Steel Tubes (CFT) is implemented. The method of description is Total Lagrangian formulation. An 8 degree of freedom (DOF) element with three nodes, which has 3 DOF per end node and 2 DOF on the middle node, has been chosen. The quadratic Lagrangian shape functions for axial deformation and the quartic Hermitian shape function for the transverse deformation are used. It is assumed that the perfect bond is maintained between steel shell and concrete core. The constitutive models employed for concrete and steel are based on the results of a recent study and include the confinement and biaxial... 

    Local joint flexibility element for offshore plateforms structures

    , Article Marine Structures ; Volume 33 , 2013 , Pages 56-70 ; 09518339 (ISSN) Golafshani, A. A ; Kia, M ; Alanjari, P ; Sharif University of Technology
    2013
    Abstract
    A large number of offshore platforms of various types have been installed in deep or shallow waters throughout the world. These structures are mainly made of tubular members which are interconnected by using tubular joints. In tubular frames, joints may exhibit considerable flexibility in both elastic and plastic range of response. The resulting flexibility may have marked effects on the overall behavior of offshore platforms.This paper investigates the effects of joint flexibility on local and global behavior of tubular framed structures in linear range of response. A new joint flexibility element is developed on the basis of flexibility matrix and implemented in a finite-element program to... 

    Health monitoring of structures using few frequency response measurements

    , Article Scientia Iranica ; Volume 17, Issue 6 A , NOVEMBER-DECEMBER , 2010 , Pages 493-500 ; 10263098 (ISSN) Golafshani, A. A ; Kianian, M ; Ghodrati, E ; Sharif University of Technology
    2010
    Abstract
    The development of damage detection techniques for offshore jacket structures is vital for preventing catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitoring. In this approach, the concept of a minimum rank perturbation theory is used. The feasibility of using a finite number of sensors and its effect on damage detection capabilities is investigated. In addition, the performance of the proposed method is evaluated in the case of multiple damages. The aforementioned points are illustrated using the numerical study of a two dimensional jacket platform  

    Estimation of the compressive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches

    , Article European Journal of Environmental and Civil Engineering ; 2022 ; 19648189 (ISSN) Tavana Amlashi, A ; Mohammadi Golafshani, E ; Ebrahimi, S. A ; Behnood, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    To mitigate the environmental issues related to the utilisation of ordinary portland cement (OPC) in concrete mixtures, attempts have been carried out to find alternative binders such as rice husk ash (RHA) as replacements for OPC. This study contributes to moving from the traditional laboratory-based methods for the determination of compressive strength (CS) towards machine learning-based approaches by developing three accurate models (i.e. artificial neural network (ANN), multivariate adaptive regression spline (MARS) and M5P model tree) for the estimation of the CS of concretes containing RHA. For this purpose, the models were developed employing 909 data records collected through... 

    Tuned mass damper for vibration control in steel jacket platforms

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 15 June 2008 through 20 June 2008, Berlin ; Volume 1 , 2008 , Pages 35-42 ; 9780791848234 (ISBN) Golafshani, A. A ; Gholizad, A ; Ocean, Offshore, and Arctic Engineering Division; ASME ; Sharif University of Technology
    2008
    Abstract
    Considering the stress cycles in joints and members due to wave induced forces on offshore platforms, fatigue analysis is therefore one of the most important analyses in offshore platforms design. Most of steel jacket type platforms located in areas with relatively high ratios of operational sea-states to maximum design environmental events; fall in acceptable safety margin in inplace and seismic analyses. But in fatigue analyses they will face critical condition. Therefore it seems that utilizing control mechanisms with the aim of increasing fatigue life in such platforms will be more preferable to merely deck displacement control. Investigation of tuned mass dampers adjustable parameters...