Loading...
Search for: golizadeh--mortaza
0.047 seconds

    Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment

    , Article Biophysical Reviews ; Volume 11, Issue 3 , 2019 , Pages 335-352 ; 18672450 (ISSN) Khafaji, M ; Zamani, M ; Golizadeh, M ; Bavi, O ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard,... 

    Sonophotocatalytic degradation of sulfadiazine by integration of microfibrillated carboxymethyl cellulose with Zn-Cu-Mg mixed metal hydroxide/g-C3N4 composite

    , Article Separation and Purification Technology ; Volume 245 , 2020 Gholami, P ; Khataee, A ; Vahid, B ; Karimi, A ; Golizadeh, M ; Ritala, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    This research aimed to prepare a recoverable sonophotocatalyst, in which microfibrillated carboxymethyl cellulose (MFC) acted as the Zn-Cu-Mg-mixed metal hydroxide/graphitic carbon nitride (MMH/g-C3N4) carrier. The characteristics of bare and composite sonophotocatalysts were analyzed by the XRD, FT-IR, BET, DRS, PL and FE-SEM equipped with the EDX mapping. The performance of prepared composites (MMH/g-C3N4@MFC) with various weight ratios of the MMH/g-C3N4 was studied for the sonophotocatalytic degradation of sulfadiazine (SDZ) as the model emerging contaminant. 93% of SDZ was degraded using the most effective catalyst (MMH/g-C3N4@MFC3) with 15% weight ratio of the MMH/g-C3N4 under the... 

    Experimental Study of Using Cellulosic Compounds in Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Golizadeh, Mortaza (Author) ; Vossoughi, Manouchehr (Supervisor) ; Karimi, Afzal (Supervisor) ; Faghihi, Faezeh (Co-Supervisor)
    Abstract
    Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate, cellulose, carboxymethyl cellulose and quaternary ammonium cationic cellulose for biomedical applications have been reported in this research. We describe preparation of cellulosic nanofibers through the electrospinning following deacetylation cellulose acetate. Moreover, surface modification of electrospun cellulose nanofibers is carried out to obtain carboxymethyl cellulose and quaternized cellulose nanofibers, respectively. At last, the structural, morphological, mechanical, swelling, wettability and the cell culture properties of the scaffolds were analyzed and... 

    Fabrication of multifunctional microfibrous and nanofibrous cellulose carriers and comparison of cell adhesion and spreading potential on them

    , Article Biointerface Research in Applied Chemistry ; Volume 10, Issue 3 , 2020 , Pages 5387-5391 Ramezan Kalmer, R ; Mohammadi, M ; Najafpour, G ; Golizadeh, M ; Haghighatnia, Y ; Karimi, A ; Sharif University of Technology
    AMG Transcend Association  2020
    Abstract
    Fibrous biomaterials have received much attention in tissue engineering and regenerative medicine due to their morphology, resembling extracellular matrix. In comparison to synthetic fibers, cellulose based fibers have interesting properties for cellular applications such as biodegradability, biocompatibility, simple preparation and their potential for chemical modification. Among cellulose derivatives, carboxymethyl cellulose and quaternized cellulose are the most important and valuable cellulose ethers which have anionic and cationic surface charge. In this research, we report the fabrication of multifunctional cellulose microfibrous and nanofibrous scaffolds and the comparison of adhesion... 

    Nanofibrillated chitosan coated highly ordered titania nanotubes array/graphene nanocomposite with improved biological characters

    , Article Carbohydrate Polymers ; Volume 254 , 2021 ; 01448617 (ISSN) Rahnamaee, S. Y ; Bagheri, R ; Heidarpour, H ; Vossoughi, M ; Golizadeh, M ; Samadikuchaksaraei, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Designing multifunctional surfaces is key to develop advanced materials for orthopedic applications. In this study, we design a double-layer coating, assembled onto the completely regular titania nanotubes (cRTNT) array. Benefiting from the biological and topological characteristics of chitosan nanofibers (CH) and reduced graphene oxide (RGO) through a unique assembly, the designed material features promoted osteoblast cell viability, prolonged antibiotic release profile, as well as inhibited bacterial biofilm formation. The synergistic effect of RGO and CH on the biological performance of the surface is investigatSed. The unique morphology of the nanofibers leads to the partial coverage of... 

    Synergistic Wound Healing by Novel Ag@ZIF-8 Nanostructures

    , Article International Journal of Pharmaceutics ; Volume 629 , 2022 ; 03785173 (ISSN) Barjasteh, M ; Mohsen Dehnavi, S ; Ahmadi Seyedkhani, S ; Yahya Rahnamaee, S ; Golizadeh, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, novel zeolitic imidazolate framework-8 (ZIF-8) functionalized with Ag (Ag@ZIF-8) nanoparticles were synthesized through a green, facile and environmental-friendly process for wound dressing applications. X-ray diffraction revealed that the ZIF-8 and Ag@ZIF-8 were successfully synthesized by green solvents at ambient temperature. Field-emission scanning electron microscopy indicated a homogeneous porous blend of ∼30 nm chitosan/bacterial cellulose (CS/BC) nanofibers embedded with ∼80–110 nm nanoparticles of the ZIF-8 and Ag@ZIF-8. Transmission electron microscopy revealed the Ag@ZIF-8 nanostructures consist of ZIF-8 cores that are covered by 5–20 nm Ag nanoparticles. MTT assay... 

    Improved biological activities of dual nanofibrous chitosan/bacterial cellulose wound dressing by a novel silver-based metal-organic framework

    , Article Surfaces and Interfaces ; Volume 36 , 2023 ; 24680230 (ISSN) Barjasteh, M ; Dehnavi, S. M ; Ahmadi Seyedkhani, S ; Rahnamaee, S. Y ; Golizadeh, M ; Sharif University of Technology
    Elsevier B.V  2023
    Abstract
    The worldwide menace of antibiotic-resistance bacteria could be weakened by development and utilization of impressive and multi-functional bactericidal materials. In this work, a novel silver-based metal-organic framework (SOF) was synthesized via a facile and environmentally-friendly process. Different amounts of the SOF nanoparticles incorporated in dual nanosized chitosan/bacterial cellulose (CS/BC) fibrous composites to make a hybrid antibacterial porous structure for mimicing the skin extracellular matrix. X-ray diffraction revealed the successful synthesis of the SOF and CS/BC-SOF nanocomposites using green solvents at ambient temperature. Energy-dispersive X-ray spectroscopy confirmed... 

    Effects of stabilizers on sustainability, activity and decolorization performance of Manganese Peroxidase enzyme produced by Phanerochaete chrysosporium

    , Article Journal of Environmental Chemical Engineering ; Volume 8, Issue 6 , 2020 Emami, E ; Zolfaghari, P ; Golizadeh, M ; Karimi, A ; Lau, A ; Ghiasi, B ; Ansari, Z ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Manganese Peroxidase (MnP), is one of the most promising lignin depolymerization enzymes, which has been widely used for degradation purposes. Nevertheless, MnP tends to lose activity rapidly during its maintenance phase and degradation process, especially in the inevitable presence of hydrogen peroxide. This study aimed to improve MnP efficiency produced by Phanerochaete chrysosporium, via enhancing its sustainability. In this context, the effects of MnO2, Fe3O4, PEG, Veratryl Alcohol (VA), and DMSO as stabilizing agents on MnP activity were explored both in vivo and in vitro. During in vivo experiments, heterogeneous Fe3O4 was found to be the desirable choice to enhance MnP production,... 

    Boosting bone cell growth using nanofibrous carboxymethylated cellulose and chitosan on titanium dioxide nanotube array with dual surface charges as a novel multifunctional bioimplant surface

    , Article International Journal of Biological Macromolecules ; Volume 228 , 2023 , Pages 570-581 ; 01418130 (ISSN) Rahnamaee, S.Y ; Dehnavi, S. M ; Bagheri, R ; Barjasteh, M ; Golizadeh, M ; Zamani, H ; Karimi, A ; Sharif University of Technology
    Elsevier B.V  2023
    Abstract
    One of the most vital aspects of the orthopedic implant field has been the development of multifunctional coatings that improve bone-implant contact while simultaneously preventing bacterial infection. The present study investigates the fabrication and characterization of multifunctional polysaccharides, including carboxymethyl cellulose (CMCn) and carboxymethyl chitosan nanofibers (CMCHn), as a novel implant coating on titania nanotube arrays (T). Field emission scanning electron microscopy (FESEM) images revealed a nanofibrous morphology with a narrow diameter for CMCn and CMCHn, similar to extracellular matrix nanostructures. Compared to the T surface, the roughness of CMCn and CMCHn... 

    Novel bilayer coating on gentamicin-loaded titanium nanotube for orthopedic implants applications

    , Article International Journal of Pharmaceutics ; Volume 636 , 2023 ; 03785173 (ISSN) Shaygani, H ; Seifi, S ; Shamloo, A ; Golizadeh, M ; Rahnamaee, S. Y ; Alishiri, M ; Ebrahimi, S ; Sharif University of Technology
    Elsevier B.V  2023
    Abstract
    Fabricating a multifunctional orthopedic implant which prevents post-surgery infection is highly desirable in advanced materials applications. However, designing an antimicrobial implant, which simultaneously promotes a sustained drug release and satisfactory cell proliferation, remains a challenge. The current study presents a drug-loaded surface-modified titanium nanotube (TNT) implant with different surface chemistry which was developed to investigate the effect of surface coating on drug release, antimicrobial activity, and cell proliferation. Accordingly, sodium alginate and chitosan were coated on the surface of TNT implants with different coating orders through layer-by-layer... 

    Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers

    , Article Carbohydrate Polymers ; Volume 207 , 2019 , Pages 796-805 ; 01448617 (ISSN) Golizadeh, M ; Karimi, A ; Gandomi Ravandi, S ; Vossoughi, M ; Khafaji, M ; Joghataei, M. T ; Faghihi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate (CA), cellulose, carboxymethyl cellulose (CMC) and quaternary ammonium cationic cellulose (QACC) for biomedical applications have been reported in this research. Several instrumental techniques were employed to characterize the nanofibers. MTT assay and cell attachment studies were also carried out to determine the cytocompatibility, viability and proliferation of the scaffolds. Fabricated CA, cellulose, CMC and QACC nanofibers had 100–600 nm diameter, −9, −1.75, −12.8, + 22 mV surface potential, 2.5, 4.2, 7.2, 7 MPa tensile strength, 122, 320, 515, 482 MPa Young modules,... 

    Industrial manufacture of enteric hard capsules using novel formulations based on hypromellose phthalate/gelatin and investigation of pantoprazole release

    , Article ACS Omega ; Volume 8, Issue 12 , 2023 , Pages 11293-11303 ; 24701343 (ISSN) Kalmer, R. R ; Haddadan, M. M ; Azizi, M ; Ghanbari, M ; Samandarian, D ; Sadjadinia, A ; Ramezanalizadeh, H ; Karimi, A ; Golizadeh, M ; Sharif University of Technology
    American Chemical Society  2023
    Abstract
    Capsules are popular oral dosage forms because of their ease of production. They are widespread pharmaceutical products. Hard capsules are preferred dosage forms for new medicines undergoing clinical tests because they do not require expansive formulation development. Functional capsules with built-in gastroresistance, aside from the traditional hard-gelatin or cellulose-based vegetarian capsules, would be beneficial. In this research, the effect of polyethylene glycol-4000 (PEG-4000) was investigated on the formulation of uncoated enteric hard capsules based on hypromellose phthalate (HPMCPh) and gelatin. Three different formulations based on HPMCPh, gelatin, and PEG-4000 were tested to...