Loading...
Search for: golnary--f
0.079 seconds

    Output power control and load mitigation of a horizontal axis wind turbine with a fully coupled aeroelastic model: novel sliding mode perspective

    , Article Mathematics ; Volume 10, Issue 15 , 2022 ; 22277390 (ISSN) Zhang, H ; Wen, J ; Golnary, F ; Zhou, L ; Sharif University of Technology
    MDPI  2022
    Abstract
    The power control of horizontal axis wind turbines can affect significantly the vibration loads and fatigue life of the tower and the blades. In this paper, we both consider the power control and vibration load mitigation of the tower fore-aft vibration. For this purpose, at first, we developed a fully coupled model of the NREL 5MW turbine. This model considers the full aeroelastic behaviour of the blades and tower and is validated by experiment results, comparing the time history data with the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code which is developed by NREL (National Renewable Energy Lab in the United States). In the next, novel sensorless control algorithms are... 

    Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation

    , Article Renewable Energy ; Volume 127 , 2018 , Pages 495-508 ; 09601481 (ISSN) Golnary, F ; Moradi, H ; Sharif University of Technology
    2018
    Abstract
    In this paper, dynamic modelling and control of WindPACT 1.5 MW wind turbine in Region 2 for extracting the maximum energy from wind is investigated (where the wind velocity is greater than ‘cut in’ and below ‘rated’ wind speeds). In this region, the generator torque must regulate the rotor speed in its optimal value while the blade pitch angle is considered constant in its optimal value. To achieve a more accurate model, wind turbine is modeled as an electromechanical system with two masses dynamics. A new method based on adaptive neuro fuzzy inference system (ANFIS) is considered for wind speed estimation; where rotor speed, output power and pitch angle are inputs of such system and... 

    Nonlinear pitch control of a large scale wind turbine by considering aerodynamic behavior of wind

    , Article 9th International Conference on Modern Circuits and Systems Technologies, MOCAST 2020, 7 September 2020 through 9 September 2020 ; 2020 Golnary, F ; Moradi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this research, nonlinear sliding mode pitch control of a wind turbine has been investigated by considering aerodynamic nonlinearities. For modeling aerodynamic interaction between the wind and the drive-train system, blade element momentum theory is used by considering Prandtl's tip loss factor and Glaurt correction. Finally, the two-degrees of freedom model of the drive-train is extracted and the sliding mode approach is examined for regulating the output power into its nominal value by controlling the pitch angle. The implementation of the above proposed control law in its related electronic circuit of the wind turbine will be considered as the future stage of the current research. ©... 

    Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed

    , Article Applied Mathematical Modelling ; Volume 65 , 2019 , Pages 566-585 ; 0307904X (ISSN) Golnary, F ; Moradi, H ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    The main propose of this paper is extracting the maximum efficiency from variable speed wind turbine, which is modelled as an electromechanical system with two masses dynamics. The maximum efficiency can be obtained by tracking the optimal rotor speed, which is controlled by the generator torque as the input. One of the most important information that is required for designing of the control system is the measurement of the effective wind velocity. In this paper, a new ANFIS-based method for estimating the effective wind velocity is developed. The aerodynamic torque has a direct relationship with the power coefficient. So in this paper, power coefficient of WindPACT 1.5 MW turbine as a... 

    Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed

    , Article Applied Mathematical Modelling ; Volume 65 , 2019 , Pages 566-585 ; 0307904X (ISSN) Golnary, F ; Moradi, H ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    The main propose of this paper is extracting the maximum efficiency from variable speed wind turbine, which is modelled as an electromechanical system with two masses dynamics. The maximum efficiency can be obtained by tracking the optimal rotor speed, which is controlled by the generator torque as the input. One of the most important information that is required for designing of the control system is the measurement of the effective wind velocity. In this paper, a new ANFIS-based method for estimating the effective wind velocity is developed. The aerodynamic torque has a direct relationship with the power coefficient. So in this paper, power coefficient of WindPACT 1.5 MW turbine as a... 

    Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine

    , Article Mathematics and Computers in Simulation ; Volume 192 , 2022 , Pages 50-69 ; 03784754 (ISSN) Golnary, F ; Moradi, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, the drivetrain identification problem of a horizontal axis gear-driven wind turbine has been considered. The identification problem leads to a precise model of the drivetrain of the wind turbines which plays a key role in the production and transmission of electrical energy. This process consists of two stages: First, offline identification which needs the input–output data from the drivetrain system. These data are obtained from the FAST code. FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is a valid aeroelastic code in the simulation aeroelastic field of offshore and onshore wind turbines. In region 2 (wind velocity is between the cut-in and rated velocities), the... 

    Developing Novel Algorithms to Simultaneous Power Regulation and Load Mitigation of Modern Variable Speed Wind Turbines

    , Ph.D. Dissertation Sharif University of Technology Golnary, Farshad (Author) ; Moradi, Hamed (Supervisor)
    Abstract
    The power control of horizontal axis wind turbines can affect significantly the vibration loads and fatigue life of the tower and the blades. In this thesis, we are going to consider both the power control and vibration load mitigation of the tower fore-aft vibration. For this purpose, at first, we developed a fully coupled model of the NREL 5MW turbine. This model considers the full aeroelastic behavior of the blades and tower and is validated by experiment results, comparing the time history data with the FAST (Fatigue, Aerodynamics, Structures, and Turbulence ) code which is developed by NREL (National Renewable Energy Lab in the United States). In the next, to estimate EWV, a novel... 

    Modelling and Electromechanical Control of Variable Speed wind Turbine in Order to Gain Maximum Wind Power

    , M.Sc. Thesis Sharif University of Technology Golnary, Farshad (Author) ; Moradi, Hamed (Supervisor)
    Abstract
    In this research, the main purpose of the controller design is in the second region of operation of a wind turbine, which involves absorbing the maximum energy from the wind. WindPACT 1.5MW turbine has been investigated and the power coefficient of this turbine has been obtained using WT-PERF and FAST softwares. Simulations show that the results of both methods are well matched. Then, using ANFIS, a method for estimating the wind speed is derived from the data obtained by FAST. Inputs to the ANFIS system are the turbine aerodynamic power, rotor speed and blade pitch angle while the output of ANFIS system is the estimated wind speed. The maximum power coefficient of the wind turbine occurs... 

    Modeling and Predicting the Residual Life of Roller Bearings under Variable-Velocity Radial Loading Using Vibration Analysis and Neural Network

    , M.Sc. Thesis Sharif University of Technology Golnary, Farshid (Author) ; Behzad, Mehdi (Supervisor)
    Abstract
    The main objective of this research is to predict the life of a bearing that works in variable speed working condition. In this project, two series of experiments were conducted to investigate the vibration of the bearings. In the first series of experiments, multiple imperfections have been created on parts of the bearing that are susceptible including the inner ring, the outer ring and the balls. The results of this test have been used to study the importance of speed compared to other parameters in increasing the vibration levels of the bearing. In addition, the results of this experiment have been used as inputs to a neural network. This neural network is trained to classify bearing... 

    Novel sensorless fault-tolerant pitch control of a horizontal axis wind turbine with a new hybrid approach for effective wind velocity estimation

    , Article Renewable Energy ; Volume 179 , December , 2021 , Pages 1291-1315 ; 09601481 (ISSN) Golnary, F ; Tse, K. T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this research, the fault-tolerant pitch angle control of a horizontal axis wind turbine in region 3 (where the wind velocity is greater than rated wind speed) is investigated. The effective wind velocity (EWV) is one of the necessary information for each control system. Wind speed is measured by the anemometers on the top of the nacelle however, the measurement is not precise and is only applicable for one point in the rotor. To address this issue, we have developed a novel hybrid approach. The approach is based on a sliding mode observer to estimate the aerodynamic torque and an adaptive neuro-fuzzy inference system (ANFIS) is introduced for obtaining the EWV. The estimated aerodynamic... 

    Nonlinear pitch angle control of an onshore wind turbine by considering the aerodynamic nonlinearities and deriving an aeroelastic model

    , Article Energy Systems ; 2021 ; 18683967 (ISSN) Golnary, F ; Moradi, H ; Tse, K. T ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this paper, the control problem of a wind turbine in region 3 (where the wind velocity is between the rated wind velocity and cut out wind velocity) has been investigated by considering the aerodynamic nonlinear behavior of the wind-structure interaction. The model has been developed by using the blade element momentum (BEM) theory to obtain the aerodynamic torque and aerodynamic loads in edgewise and flapwise directions. For validation, the aerodynamic behavior of the onshore NREL 5 MW turbine has been compared with the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) aeroelastic code in terms of the power coefficient. Wind speed is modelled as a three-dimensional profile with... 

    Nonlinear pitch angle control of an onshore wind turbine by considering the aerodynamic nonlinearities and deriving an aeroelastic model

    , Article Energy Systems ; Volume 14, Issue 1 , 2023 , Pages 197-227 ; 18683967 (ISSN) Golnary, F ; Moradi, H ; Tse, K. T ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2023
    Abstract
    In this paper, the control problem of a wind turbine in region 3 (where the wind velocity is between the rated wind velocity and cut out wind velocity) has been investigated by considering the aerodynamic nonlinear behavior of the wind-structure interaction. The model has been developed by using the blade element momentum (BEM) theory to obtain the aerodynamic torque and aerodynamic loads in edgewise and flapwise directions. For validation, the aerodynamic behavior of the onshore NREL 5 MW turbine has been compared with the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) aeroelastic code in terms of the power coefficient. Wind speed is modelled as a three-dimensional profile with... 

    Effect of heating profile on desorption curve in temperature programmed desorption analysis: Case study of acid sites distribution of SAPO-34

    , Article Journal of Porous Materials ; Volume 16, Issue 5 , 2009 , Pages 599-603 ; 13802224 (ISSN) Izadbakhsh, A ; Farhadi, F ; Khorasheh, F ; Yan, Z. F ; Sharif University of Technology
    2009
    Abstract
    Comparison of the traditional linear heating method of TPD with an original stepwise heating scheme was reported for the first time. Stepwise heating TPD was carried out by keeping the temperature constant as soon as ammonia desorption signal rises until the signal returns to the baseline. More ammonia desorption peaks on a SAPO-34 catalyst were identified using TPD with stepwise heating. The effect of temperature ramp on desorption peak broadening in TPD curve was also addressed. The more distinct ammonia desorption peaks in stepwise TPD indicates that ammonia adsorbs in about five or six different ways on SAPO-34, and attribution of different adsorptions may be explained considering some... 

    Theoretical and experimental study of cascade solar stills

    , Article Solar Energy ; Volume 90 , April , 2013 , Pages 205-211 ; 0038092X (ISSN) Ziabari, F. B ; Sharak, A. Z ; Moghadam, H ; Tabrizi, F. F ; Sharif University of Technology
    2013
    Abstract
    Most part of Iran is dominated by arid and semi-arid areas due to low annual rainfall. The need for production of fresh water from brackish water is considerably high, especially in dry regions. In this study 1 month daily-based experimental data from a solar still site has been reported. The technical and operational problems of this site which finally contributed to the total cease of the site are described. Then a detailed analysis is investigated on progress of a prototype which constructed in order to solve the site's problems. The results of 1 month of experimental data of the final design showed that the last prototype could be used to solve the current problems of the site. The... 

    Application of a continuous kinetic model for the hydrocracking of vacuum gas oil

    , Article Petroleum Science and Technology ; Vol. 32, Issue. 18 , 2014 , Pages 2245-2252 ; ISSN: 10916466 Arefi, A ; Khorasheh, F ; Farhadi, F ; Sharif University of Technology
    2014
    Abstract
    Hydrocracking is one of the most versatile petroleum refining processes for production of valuable products including gasoline, gas oil, and jet fuel. In this paper, a five-parameter continuous lumping model was used for kinetic modeling of hydrocracking of vacuum gas oil (VGO). The model parameters were estimated from industrial data obtained from a fixed bed reactor operating at an average temperature of 400°C and residence time of 0.3 h. Product distributions were obtained in terms of the weight fraction of various boiling point cuts. The model parameters were estimated using the Nelder-Mead optimization procedure and were correlated with temperature. Comparison of experimental and... 

    An improved methodology for design of custom-made hip prostheses to be fabricated using additive manufacturing technologies

    , Article Rapid Prototyping Journal ; Volume 18, Issue 5 , 2012 , Pages 389-400 ; 13552546 (ISSN) Rahmati, S ; Abbaszadeh, F ; Farahmand, F ; Sharif University of Technology
    Emerald  2012
    Abstract
    Purpose - The purpose of this paper is to present an improved methodology for design of custom-made hip prostheses, through integration of advanced image processing, computer aided design (CAD) and additive manufacturing (AM) technologies. Design/methodology/approach - The proposed methodology for design of custom-made hip prostheses is based on an independent design criterion for each of the intra-medullary and extra-medullary portions of the prosthesis. The intra-medullar part of the prosthesis is designed using a more accurate and detailed description of the 3D geometry of the femoral intra-medullary cavity, including the septum calcar ridge, so that an improved fill and fit performance... 

    Evaluation and enhancing of operational performance and training objective in accordance with Line Operations Safety Audit (LOSA)

    , Article International Air Safety Seminar Proceedings, 1 November 2011 through 3 November 2011 ; November , 2011 , Pages 78-99 ; 02705176 (ISSN) ; 9781618393975 (ISBN) Khoshkhoo, R ; Goodarzi, F ; Sharafbafi, F ; Sharif University of Technology
    2011

    Real-time impulse noise suppression from images using an efficient weighted-average filtering

    , Article IEEE Signal Processing Letters ; Volume 22, Issue 8 , 2015 , Pages 1050-1054 ; 10709908 (ISSN) Hosseini, H ; Hessar, F ; Marvasti, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    In this letter, we propose a method for real-time high density impulse noise suppression from images. In our method, we first apply an impulse detector to identify the corrupted pixels and then employ an innovative weighted-average filter to restore them. The filter takes the nearest neighboring interpolated image as the initial image and computes the weights according to the relative positions of the corrupted and uncorrupted pixels. Experimental results show that the proposed method outperforms the best existing methods in both PSNR measure and visual quality and is quite suitable for real-time applications  

    Kinetic modeling of pyrolysis of scrap tires

    , Article Journal of Analytical and Applied Pyrolysis ; Volume 84, Issue 2 , 2009 , Pages 157-164 ; 01652370 (ISSN) Mazloom, G ; Farhadi, F ; Khorasheh, F ; Sharif University of Technology
    2009
    Abstract
    The disposal of used tires is a major environmental problem. With increasing interest on recovery of wastes, pyrolysis is considered as an alternative process for recovering some of the value in scrap tires. An accurate kinetic model is required to predict product yields during thermal or catalytic pyrolysis of scrap tires. Pyrolysis products contain a variety of hydrocarbons over a wide boiling range. A common approach for kinetic modeling of such complex systems is lumping where each lump is defined by a boiling point range. Available experimental data for thermal and catalytic pyrolysis of scrap tires from the literature were used to evaluate two types of lumping models; discrete and... 

    Determine oil content in petroleum waxes

    , Article Hydrocarbon Processing ; Volume 85, Issue 6 , 2006 , Pages 95-97 ; 00188190 (ISSN) Mafi, M ; Yazdani, F ; Farhadi, F ; Sharif University of Technology
    2006