Loading...
Search for: gorjizadeh--hossein
0.147 seconds

    Optimal condition for optical trapping of large particles: Tuning the laser power and numerical aperture of the objective

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 11 , 2019 , Pages 3053-3059 ; 07403224 (ISSN) Gorjizadeh Alinezhad, H ; Nader, S ; Reihani, S ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    A Gaussian laser beam tightly focused through a high-numerical-aperture objective lens, so-called optical tweezers, is widely used for piconewton-range force spectroscopy. Utilizing a proper value for parameters such as bead size, numerical aperture of the objective, and power of the laser is always a challenge. Here, we show which set of values for the parameters can maximize lateral trapping efficiency. Our results show that for a high-numerical-aperture force spectroscopy, a bead with a diameter of 4–5 µm is suitable, and that for manipulation using large beads, utilizing a proper value for laser power and numerical aperture of the objective is crucial. We present a practical method for... 

    Theoretical Calculation of Optimal Trapping Conditions for Particles with Nanometer to Micrometers Sizes Using Generalized Lorenz-Mie Theory

    , M.Sc. Thesis Sharif University of Technology Gorjizadeh, Hossein (Author) ; Seyed Reihani, Nader (Supervisor)
    Abstract
    Optical tweezers consist of a tightly focused laser beam. Particle with refractive index grater than that of the surrounding medium are eligible for optical trapping. This device is used for measuring forces from pico-newton to nano-newton, and displacements from nanometer to micrometer. In biopolymers, for example, it is used for studying the elasticity of DNA molecules, mechanical properties of cell membrane; and also in Microfluidics, it can is used for mixing two liquids flowing in a micro-channel by rotating a trapped particle. In general, physics of optical tweezers (or interaction of the trapped particle with the tightly focused laser beam) is treated in three different regimes:1)... 

    Enhancement of axial force of optical tweezers by utilizing a circular stop at the back focal plane of the objective

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 11 , 2018 , Pages 2654-2660 ; 07403224 (ISSN) Gorjizadeh Alinezhad, H ; Meydanloo, S ; Reihani, S. N ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    Optical tweezers are indispensable force spectroscopes. The trap stiffness and the linear force range of the instrument determine the working force range of the instrument. Here we show both theoretically and experimentallythat utilizing a circular obstruction at the back focal plane of the objective can significantly increase the maximumlinear force. For instance, utilizing a disk with an obstruction ratio of 0.773 could increase the maximum linearforce by a factor of ∼39 when a 3.4 μm polystyrene bead is trapped. We also show that this simple beam shapingmethod can significantly improve the maximum applicable force per unit power of the laser entering the objectivelens. © 2018 Optical... 

    Optimal in-depth trapping by tuning the correction collar of a dry objective lens

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 39, Issue 12 , 2022 , Pages 3209-3215 ; 07403224 (ISSN) Gorjizadeh Alinezhad, H ; Mahdavi, S. M ; Reihani, S. N. S ; Sharif University of Technology
    Optica Publishing Group (formerly OSA)  2022
    Abstract
    Optical tweezers are proven and indispensable micro-manipulation tools. It is very common to use an immersion-assisted high NA objective for optical trapping of micrometer-sized beads. However, such objectives suffer from low working depth range. Here we show, both by theory and experiment, that a dry objective can be utilized for optimal trapping of even sub-micrometer objects. For the first time, to the best of our knowledge, we were able to stably trap polystyrene beads with radii of 270 and 175 nm in 3D using an objective with numerical aperture of 0.9. © 2022 Optica Publishing Group  

    Optimization and Accurate Measurement of the Force Acting on the Spherical Nano/micro Particles Trapped by Optical Tweezers: Theoretical and Experimental Study

    , Ph.D. Dissertation Sharif University of Technology Gorjizadeh Alinezhad, Hossein (Author) ; Seyed Reihani, Nader (Supervisor) ; Mahdavi, Mohammad (Supervisor)
    Abstract
    In this thesis, the optical force acting on the spherical polystyrene particle trapped by optical tweezers is calculated. The calculation is based on the generalized Lorenz-Mie theory. The effect of various parameters on the optical force is also investigated. It is shown that, tuning the different parameters, one can significantly enhance the optical force acting on the trapped particle. Besides, one can achieve a stable 3D trap of a sub-micron particle somewhere far deep inside the sample chamber. Our results indicate that: (1) By obstructing the central region of the incident Gaussian laser beam at the back focal plane of the objective lens, the trap stiffness, the maximum linear force,... 

    Lattice relaxation in many-electron states of the diamond vacancy

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 71, Issue 3 , 2005 ; 10980121 (ISSN) Heidari Saani, M ; Vesaghi, M. A ; Esfarjani, K ; Ghods Elahi, T ; Sayari, M ; Hashemi, H ; Gorjizadeh, N ; Sharif University of Technology
    2005
    Abstract
    Symmetric lattice relaxation around a vacancy in diamond and its effect on many electron states of the defect have been investigated. A molecular approach is used to evaluate accurately electron-electron (e-e) interaction via a semiempirical formalism which is based on a generalized Hubbard Hamiltonian. Coupling of the defect molecule to surrounding bulk is also considered using an improved Stillinger-Weber potential for diamond. Strong dependence of the electronic energy levels to the relaxation size of the nearest neighbor (NN) atoms indicates that in order to obtain quantitative results the effect of lattice relaxation should be considered. Except for the high spin state of the defect 5A... 

    Calculation of the Energy Release Rate of Nano-Cracks in FCC Materials Via the Many Body Atomic Scale FEM

    , M.Sc. Thesis Sharif University of Technology Ostad Hossein, Alireza (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Since the classical continuum theory fails to deal with the problems associated with defects, stress concentrators, and relevant deformation phenomena in solids, alternative approaches that can detect the atomistic nature of materials' fracture are required. The deficiency of the capture the size effect which yields delusively high values for some components of the stress field right on the edge of the stress concentrators, and its weakness in describing the complex interaction between small inhomogeneities, cracks and the like when they are only a few nanometers apart, are among some of the disadvantages of the classical approach. In recent years, however, atomistic methods are emerging to... 

    Semisolid Stir Joining of As-Cast Silicon-Aluminum Bronze

    , M.Sc. Thesis Sharif University of Technology Ferasat, Keyvan (Author) ; Kokabi, Amir Hossein (Supervisor) ; Ashuri, Hossein (Supervisor)
    Abstract
    Aluminum Bronzes have many applications in marine environments. These alloys suffer from both hot cracking and cold cracking. In order to overcome the hot cracking and cold cracking, Semisolid Stir Joining method and a proper thermal cycle was used respectively. Effects of temperature, stirring rate, and tool type were investigated in Semisolid Stir joining method. In this method, butt joint design was used in order to place specimens, and the specimens were heated up to specific temperatures (920, 925, 930°C). A stirrer (Cylindrical and Grooved tool) with three rotational speeds (800, 1200, 1600 RPM) was introduced into the stir weld seam. Welded specimens were cooled to the 900°C... 

    The Study of Eliminating Gender Gap in Iran Labor Market on Participation Rate of Married Urban Women

    , M.Sc. Thesis Sharif University of Technology Asghari, Fatemeh (Author) ; Rahmati, Mohammad Hossein (Supervisor) ; Joshaghani, Hossein (Supervisor)
    Abstract
    The low female labor force participation rate in the Iranian labor market relative to the global average and even to countries that do not differ significantly from the socio-economic characteristics of our country is one of the important questions of the Iranian labor market. In this study, we seek to answer the question of whether the economic participation rate of married women will increase if the gender gaps in wages, job findings and job losses among women and men are eliminated in the Iranian labor market. To answer this question using household expenditure and income data and labor force data, we show that between the two categories of occupations, in terms of the share of women's... 

    Graph homomorphisms through random walks [electronic resource]

    , Article Journal of Graph Theory ; 2003, Volume 44, Issue 1, pages 15–38 Daneshgar, A. (Amir) ; Hajiabolhassan, Hossein ; Sharif University of Technology
    Abstract
    In this paper we introduce some general necessary conditions for the existence of graph homomorphisms, which hold in both directed and undirected cases. Our method is a combination of Diaconis and Saloff–Coste comparison technique for Markov chains and a generalization of Haemers interlacing theorem. As some applications, we obtain a necessary condition for the spanning subgraph problem, which also provides a generalization of a theorem of Mohar (1992) as a necessary condition for Hamiltonicity. In particular, in the case that the range is a Cayley graph or an edge-transitive graph, we obtain theorems with a corollary about the existence of homomorphisms to cycles. This, specially, provides... 

    Unique list-colourability and the fixing chromatic number of graphs [electronic resource]

    , Article Discrete Applied Mathematics ; Volume 152, Issues 1–3, 1 November 2005, Pages 123–138 Daneshgar, A. (Amir) ; Hajiabolhassan, Hossein ; Sharif University of Technology
    Abstract
    In this paper we introduce a chromatic parameter, called the fixing chromatic number, which is related to unique colourability of graphs, in the sense that it measures how one can embed the given graph G in G∪Kt by adding edges between G and Kt to make the whole graph uniquely t-colourable. We study some basic properties of this parameter as well as its relationships to some other well-known chromatic numbers as the acyclic chromatic number. We compute the fixing chromatic number of some graph products by applying a modified version of the exponential graph construction  

    Circular colouring and algebraic no-homomorphism theorems

    , Article European Journal of Combinatorics ; Volume 28, Issue 6, August 2007, Pages 1843–1853 Daneshgar, A. (Amir) ; Hajiabolhassan, Hossein ; Sharif University of Technology
    Abstract
    In this paper, we apply some new algebraic no-homomorphism theorems in conjunction with some new chromatic parameters to estimate the circular chromatic number of graphs. To show the applicability of the general results, as a couple of examples, we generalize a well known inequality for the fractional chromatic number of graphs and we also show that the circular chromatic number of the graph obtained from the Petersen graph by excluding one vertex is equal to 3. Also, we focus on the Johnson–Holroyd–Stahl conjecture about the circular chromatic number of Kneser graphs and we propose an approach to this conjecture. In this regard, we introduce a new related conjecture on Kneser graphs and we... 

    Density and power graphs in graph homomorphism problem

    , Article Discrete Mathematics ; Volume 308, Issue 17, 6 September 2008, Pages 4027–4030 Daneshgar, A. (Amir) ; Hajiabolhassan, Hossein ; Sharif University of Technology
    Abstract
    We introduce two necessary conditions for the existence of graph homomorphisms based on the concepts of density and power graph. As corollaries, we obtain a lower bound for the fractional chromatic number, and we set forward elementary proofs of the facts that the circular chromatic number of the Petersen graph is equal to three and the fact that the Coxeter graph is a core  

    Temperature dependence study of nonocontact AFM images using molecular dynamics simulations [electronic resource]

    , Article Int. Journal of Modern Physics ; 2012, Vol. 5, pp. 418-432 Nejat Pishkenari, H. (Hossein) ; Meghdar, Ali ; Sharif University of Technology
    Abstract
    The effect of temperature on the noncontact atomic force microscopy (NC-AFM) surface imaging is investigated with the aid of molecular dynamics (MD) analysis based on the Sutton-Chen (SC) interatomic potential. Particular attention is devoted to the tip and sample flexibility at different temperatures. When a gold coated probe is brought close to the Au (001) surface at high temperatures, the tip and surface atoms are pulled together and their distance becomes smaller. The tip and sample atoms displacement varies in the different environment temperatures and this leads to the different interaction forces. Along this line, to study the effect of temperature on the resulting images, we have... 

    Developing an Analytical Model for Predicting the Residual Stresses Induced by Shot Peening with Considering the Effect of Initial Surface Treatment

    , Ph.D. Dissertation Sharif University of Technology Sherafatnia, Khalil (Author) ; Farrahi, Gholam Hossein (Supervisor) ; Mahmoudi, Amir Hossein (Co-Supervisor)
    Abstract
    Shot peening is a cold-working process commonly used in industry to improve the fatigue performance, stress corrosion resistance and surface nano-crystallization of metallic parts. This process extends fatigue life via two mechanisms: Preventing the crack growth due to compressive residual stresses and, preventing the crack initiation because of increased material hardness. These mechanisms are the results of the bombardment of the component's surface with small spherical particles. In this research, an analytical model is developed for estimating the residual stress distribution induced by shot peening process. The modifications of the developed analytical model are related to... 

    Evaluating Reliability of SSDs Against Power Outage

    , M.Sc. Thesis Sharif University of Technology (Author) ; Asadi, Hossein (Supervisor)
    Abstract
    Solid-State Drives (SSDs) provide high performance, low power consumption, and hence are widely used in the I/O cache of enterprise storage systems and high performance servers. Although employing high performance SSDs in the I/O cache of storage systems significantly improves system performance, it comes with significant reliability threats for write operations upon power failures. In order to provide high level of reliability, storage architectures employ SSDs in I/O cache with RAID-1 configuration, however, such configuration only partially mitigates the reliability issues of the SSDs. In this thesis, we analyze the reliability of SSD-based I/O caches against power outage and high... 

    On the isoperimetric spectrum of graphs and its approximations [electronic resource]

    , Article Journal of Combinatorial Theory, Series B ; Volume 100, Issue 4, July 2010, Pages 390–412 Daneshgar, A. (Amir) ; Hajiabolhassan, Hossein ; Javadi, Ramin ; Sharif University of Technology
    Abstract
    In this paper1 we consider higher isoperimetric numbers of a (finite directed) graph. In this regard we focus on the nth mean isoperimetric constant of a directed graph as the minimum of the mean outgoing normalized flows from a given set of n disjoint subsets of the vertex set of the graph. We show that the second mean isoperimetric constant in this general setting, coincides with (the mean version of) the classical Cheeger constant of the graph, while for the rest of the spectrum we show that there is a fundamental difference between the nth isoperimetric constant and the number obtained by taking the minimum over all n-partitions. In this direction, we show that our definition is the... 

    Performance Comparison of Kolmogorov-Arnold Networks and Neural Networks

    , M.Sc. Thesis Sharif University of Technology Eshtehardian, Mohammad (Author) ; Hossein Khalaj, Babak (Supervisor) ; Yassaee Maybodi, Mohammad Hossein (Supervisor)
    Abstract
    Neural networks have become a primary tool in machine learning, capable of learning complex mappings by applying fixed nonlinear activation functions (e.g., ReLU or tanh) to linear combinations of data. However, a fundamental challenge lies in the mathematical interpretation of their internal workings. As an alternative, Kolmogorov-Arnold Networks (KANs) have been introduced, founded on the Kolmogorov-Arnold representation theorem. By employing learnable activation functions on the edges of the network, KANs offer an inherently more interpretable model architecture. The main objective of this thesis is to provide a theoretical and analytical comparison between Kolmogorov-Arnold Networks and... 

    Using Structural Language Modeling in Continous Speech Recognition Systems

    , M.Sc. Thesis Sharif University of Technology SheikhShab, Golnar (Author) ; Sameti, Hossein (Supervisor)
    Abstract
    Language model is one of the most important parsts of an automated speech recognition system whiche incorporates the knowledge of Natural Language to the system to improve its accuracy. Conventionally used language model in recognition systems is ngram which usually is extracted from a large corpus using related frequency method. ngram model approximates the probability of a word sequence by multiplying its ngram probabilities and thus does not take into account the long distance dependencies. So, syntactic language models could be of interest. In this research after probing different syntactic language models, a mehtod for re-estimating ngram model, introduced by Stolcke in 1994, was...