Loading...
Search for: h-gangaraj--s--m
0.147 seconds

    Side effects of shot peening on fatigue crack initiation life

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 24, Issue 3 , 2011 , Pages 275-280 ; 17281431 (ISSN) Gangaraj, S. M. H ; Farrahi, G. H ; Sharif University of Technology
    2011
    Abstract
    The beneficial effects of shot peening on fatigue life of mechanical components are well known. However, there are some reports in the literature that indicate inappropriate shot peening parameters tend to reduce the fatigue life. It is therefore, the purpose of this study to find a logical quantitative justification for these observations. Using finite element method, a dynamic elasticplastic simulation of shot peening was presented. Effect of shot velocity and size on surface morphology after shot peening were examined. Fatigue crack initiation life calculation of shot peened specimens revealed that beneficial effect of shot peening significantly vanishes in the case of high velocities and... 

    An approach to relate shot peening finite element simulation to the actual coverage

    , Article Surface and Coatings Technology ; Vol. 243 , 2014 , pp. 39-45 ; ISSN: 02578972 Gangaraj, S. M. H ; Guagliano, M ; Farrahi, G. H ; Sharif University of Technology
    2014
    Abstract
    Coverage is one of the most important parameters which is always used in practice to characterize a shot peening process. At the same time however, it is the most missing parameter in the finite element simulations of this process. This study aims to relate shot peening simulation to the actual coverage that is developed during the process. Accordingly, two important models from literature are re-simulated and their capability to predict an actual coverage is assessed. Results of this study illustrate that full coverage situation is not captured by these models. Thereafter, a random finite element simulation along with a step by step examination of the treated surface is adopted in order to... 

    Finite element simulation of shot peening coverage with the special attention on surface nanocrystallization

    , Article Procedia Engineering, 5 June 2011 through 9 June 2011 ; Volume 10 , 2011 , Pages 2464-2471 ; 18777058 (ISSN) Hassani Gangaraj, S. M ; Guagliano, M ; Farrahi, G. H ; Sharif University of Technology
    2011
    Abstract
    The present study aims to challenge the existing finite element models in terms of one of the most important practical parameters, i.e. coverage. Important models from the literature are re-simulated and their resulted treated surfaces are carefully examined. Result of this study shows that existing finite element models could not reflect the realistic coverage. A variable dimension symmetry cell is developed in order to acquire full coverage and at the same time not increasing the computational cost. This model can successfully simulate the surface nanocrystallization by severe shot peening in which the amount of coverage is much higher than conventional shot peening  

    On the temperature and residual stress field during grinding

    , Article WCE 2010 - World Congress on Engineering 2010, 30 June 2010 through 2 July 2010 ; Volume 2 , 2010 , Pages 1196-1200 ; 9789881821072 (ISBN) H-Gangaraj, S. M ; Farrahi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    2010
    Abstract
    Grinding is widely used for manufacturing of components that require fine surface finish and good dimensional accuracy. In this study a thermo-mechanical finite element analysis is conducted to find out how grinding parameters can affect temperature and residual stress distribution in the workpiece. Results of parametric study presented in this work indicate, by carefully selecting the grinding parameters, minimum thermal and mechanical damage can be achieved. Higher workpiece velocities produce higher surface residual stress. By increasing depths of cut, depth of tensile residual stresses increases. Convection heat coefficient does not have any considerable effect on surface residual stress... 

    Shot peening coverage effect on residual stress profile by FE random impact analysis

    , Article Surface Engineering ; Volume 32, Issue 11 , 2016 , Pages 861-870 ; 02670844 (ISSN) Ghasemi, A ; Hassani Gangaraj, S. M ; Mahmoudi, A. H ; Farrahi, G. H ; Guagliano, M ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Shot peening is one of the most effective surface treatments for improving the fatigue strength of machine elements. In this paper, a new finite element-based model to predict the effect of coverage on the surface state is proposed and critically discussed. By this model, the effects of Rayleigh damping, mesh size, and target dimensions on residual stress profile are investigated using a random impingement simulation of shot peening. Moreover, the model enables the realistic simulation of shot peening process with an affordable computational time with respect of present approaches without reducing the number of impacts and analysis accuracy: the computational time was reduced by 25% in... 

    Computational study of an integrated microfluidic device for active separation of RBCs and cell lysis

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 174 , 2022 ; 02552701 (ISSN) Jalilvand, E ; Shamloo, A ; Gangaraj, M. H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Separation and lysis of RBCs play an important role in diagnosis of different diseases. Although they have been partially studied in several researches, a comprehensive study on integrating both separation and lysis units on a single chip has been seen rarely in the literature. Also, the factors related to the chemical lysis process have not been investigated in detail. In this study, we introduce a novel microfluidic channel design for sequential RBC's separation and lysis. For the separation part, an active method with an electric field was applied to the cells. Besides, a novel mixer was designed for mixing the cell solution and lysis reagent. In the lysis section, we used a mathematical... 

    Finite element analysis of shot-peening effect on fretting fatigue parameters

    , Article Tribology International ; Volume 44, Issue 11 , 2011 , Pages 1583-1588 ; 0301679X (ISSN) H-Gangaraj, S. M ; Alvandi Tabrizi, Y ; Farrahi, G. H ; Majzoobi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    2011
    Abstract
    Shot peening is widely used to improve the fretting fatigue strength of critical surfaces. Fretting fatigue occurs in contacting parts that are subjected to fluctuating loads and sliding movements at the same time. This paper presents a sequential finite element simulation to investigate the shot peening effects on normal stress, shear stress, bulk stress and slip amplitude, which are considered to be the controlling parameters of fretting damage. The results demonstrated that among the modifications related to shot peening, compressive residual stress has a dominant effect on the fretting parameters  

    The effect of shot peening on fatigue life of welded tubular joint in offshore structure

    , Article Materials and Design ; Volume 36 , 2012 , Pages 250-257 ; 02641275 (ISSN) Habibi, N ; H-Gangaraj, S. M ; Farrahi, G. H ; Majzoobi, G. H ; Mahmoudi, A. H ; Daghigh, M ; Yari, A ; Moridi, A ; Sharif University of Technology
    2012
    Abstract
    An offshore structure is exposed to environmental loading and cyclic stress variations throughout its life. This would result in the possibility of fatigue cracking in its members. Cracks in these structures usually initiate around welded areas, then grow progressively from the heat-affected zone to base metal through the thickness of the tubular members. Therefore, fatigue life improvement of offshore structures is of great importance. In this paper, structural analysis of an offshore platform is carried out and the critical joint is specified. The welding process is simulated and the residual stresses due to the welding are determined. Experimental residual stress measurement is carried... 

    Investigating the effect of reagent parameters on the efficiency of cell lysis within droplets

    , Article Physics of Fluids ; Volume 32, Issue 6 , 2020 Shamloo, A ; Hassani Gangaraj, M ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Cell lysis is an essential primary step in cell assays. In the process of cell lysis, the cell membrane is destroyed and the substances inside the cell are extracted. By utilizing a droplet-based microfluidic platform for cell lysis, the mixer unit that is required for mixing lysis reagents with the cells can be excluded, and thus, the complexity of the fabrication process is reduced. In addition, lysing the cells within the droplets will prevent the cells from exposure to the channel walls, and as a result, cleanliness of the samples and the device is maintained. In this study, cell lysis within the droplets and the parameters affecting the efficiency of this process are investigated using... 

    Optimization of cervical cage and analysis of its base material: A finite element study

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 236, Issue 11 , 2022 , Pages 1613-1625 ; 09544119 (ISSN) Jalilvand, E ; Abollfathi, N ; Khajehzhadeh, M ; Hassani Gangaraj, M ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Nowadays, cervical disorders are common due to human lifestyles. Accordingly, the cage design should be optimized as an essential issue. For an optimal design, an objective function is utilized to calculate the proper geometrical parameters. Additionally, the base material of the cage plays a key role in its functionality and final cost. Novel materials are currently introduced with more compatibility with the bone in terms of mechanical and chemical properties. In this study, a cervical cage was modeled based on PEEK material with three types of tooth designs on its surface. The cervical cage is assumed to be implanted between C6 and C7 vertebrae. The geometric parameters of the cage were... 

    The effect of non-uniform magnetic field on the efficiency of mixing in droplet-based microfluidics: a numerical investigation

    , Article Micromachines ; Volume 13, Issue 10 , 2022 ; 2072666X (ISSN) Rezaeian, M ; Nouri, M ; Hassani Gangaraj, M ; Shamloo, A ; Nasiri, R ; Sharif University of Technology
    MDPI  2022
    Abstract
    Achieving high efficiency and throughput in droplet-based mixing over a small characteristic length, such as microfluidic channels, is one of the crucial parameters in Lab-on-a-Chip (LOC) applications. One solution to achieve efficient mixing is to use active mixers in which an external power source is utilized to mix two fluids. One of these active methods is magnetic micromixers using ferrofluid. In this technique, magnetic nanoparticles are used to make one phase responsive to magnetic force, and then by applying a magnetic field, two fluid phases, one of which is magneto-responsive, will sufficiently mix. In this study, we investigated the effect of the magnetic field’s characteristics... 

    Developing an Off-the-Shelf microfluidic droplet generation device for cell encapsulation

    , Article Industrial and Engineering Chemistry Research ; Volume 61, Issue 30 , 2022 , Pages 10689-10699 ; 08885885 (ISSN) Hassani Gangaraj, M ; Shamloo, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Droplet microfluidics is a platform of microfluidics in which two immiscible fluids are used to generate droplets for various biomedical applications. This platform introduces several advantages in applications such as cell lysis, cell culture, co-culture, and cell encapsulation. The most important issues regarding droplet generation devices are the fabrication complexity and maintenance of these devices. In this study, a simple and easy-to-fabricate microdroplet generator is designed and fabricated to resolve these issues. Furthermore, since this device is easy to fabricate and use, it can play a key role in the fabrication of medical devices for controlling infectious diseases in poor and... 

    Effect of Grinding and Shot Peening on Fatigue Life of Welded Joints

    , M.Sc. Thesis Sharif University of Technology Hassani Gangaraj, Mostafa (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    Metallurgical initial defects, stress concentration due to change in geometry and induced tensile residual stress during welding create an extraordinary high possibility of fatigue cracks nucleation and propagation in the weld toe region. Despite this, the ever increasing use of welding in offshore, aerospace and automotive industries, as the most applied mechanical joint, has occasioned a very extensive attempt to achieve an in-depth understanding of failure mechanisms and fatigue life improvement techniques of welded joints. Generally, these techniques could be classified into two broad categories. The first consists of methods that modify the geometry and the other is related to the... 

    Multi- and Single-cellular Encapsulation within Microchannels for Effective Cell Lysis and DNA Extraction and Purification

    , M.Sc. Thesis Sharif University of Technology Hassani Gangaraj, Mojtaba (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    In this study a droplet-based microfluidic system is desighned and fabricated to effectiverly lyse MCF7 cells and extract and purify their DNAs. The main purpose of this study is to transfer all the steps from macro scale to a microfluidic system containing a fluidic chip. This system is a semi automatic system and every part of the lysis and purification process is performed in one step. The first step is to encapsulate single cells and multi cells inside the droplets. By controlling the concentration of the cell solution, the number of encapsulated cells inside the droplet is efficiently and easily controlled and the cells were encapsulated as single cells and as multi cells inside the... 

    Sustainable solutions for advanced energy management system of campus microgrids: model opportunities and future challenges

    , Article Sensors ; Volume 22, Issue 6 , 2022 ; 14248220 (ISSN) Muqeet, H. A ; Javed, H ; Akhter, M. N ; Shahzad, M ; Munir, H. M ; Nadeem, M. U ; Bukhari, S. S. H ; Huba, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Distributed generation connected with AC, DC, or hybrid loads and energy storage systems is known as a microgrid. Campus microgrids are an important load type. A university campus microgrids, usually, contains distributed generation resources, energy storage, and electric vehicles. The main aim of the microgrid is to provide sustainable, economical energy, and a reliable system. The advanced energy management system (AEMS) provides a smooth energy flow to the microgrid. Over the last few years, many studies were carried out to review various aspects such as energy sustainability, demand response strategies, control systems, energy management systems with different types of optimization... 

    Partially hydrolyzed crosslinked alginate-graft-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive Properties [electronic resource]

    , Article Macromolecular Research ; January 2005, Volume 13, Issue 1, pp 45-53 Pourjavadi, A. (Ali) ; Aminfazl, M. S ; Hosseinzadeh, H
    Abstract
    In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacrylamide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator andN,N′-methylenebisacrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g-PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-polymethacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the... 

    Determinants of career success: A case study of male teachers in secondary schools

    , Article Estudios de Economia Aplicada ; Volume 39, Issue 4 , 2021 ; 11333197 (ISSN) Salahudin, S. N ; Ramli, H. S ; Razak, M. H. A ; Abdullah, M. S ; Masum, A ; Sharif University of Technology
    Ascociacion Internacional de Economia Aplicada  2021
    Abstract
    Malaysian secondary schools are facing a shortage of male teachers. Almost 70% of the teaching profession is dominated by female teachers. There is an obvious gap in the reason why teaching is not preferred by the male gender. This study intends to find the determinants of career success among male teachers with the hope of revealing the career success factors that are associated with male teachers. A survey was done among 140 male teachers in secondary schools in the state of Malacca, Malaysia. Results showed that 4out of 5 of the determinants factors are significantly explaining career success among the teachers (Emotional Intelligence, Person-Job-Fit, Career Adaptability & Work-Life... 

    The role of heat treatment on wear behavior of powder metallurgy low alloy steels

    , Article Materials and Design ; Volume 23, Issue 7 , 2002 , Pages 667-670 ; 02641275 (ISSN) Khorsand, H ; Habibi, S. M ; Yoozbashizadea, H ; Janghorban, K ; Reihani, S. M. S ; Rahmani Seraji, H ; Ashtari, M ; Sharif University of Technology
    Elsevier Ltd  2002
    Abstract
    The influence of manufacturing parameters such as compacting pressure, heat treatment and microstructure on the static and dynamic properties of Fe-1.75 Ni-1.5 Cu-0.5 Mo-0.6 C was investigated. Wear and fatigue tests were carried out on reciprocate wearing and tension compression mode, respectively. The results show that delamination wear mechanism of sintered steel is similar to that of conventional wrought or cast materials. But, in sintered material, open porosity acts as sites of generation and collection of wear debris or formation of subsurface cracks. Wear rate is decreased and fatigue strength is increased by heat treatment. © 2002 Elsevier Science Ltd. All rights reserved  

    SMART: a scalable mapping and routing technique for power-gating in NoC routers

    , Article 2017 11th IEEE/ACM International Symposium on Networks-on-Chip, NOCS 2017, 19 October 2017 through 20 October 2017 ; 2017 ; 9781450349840 (ISBN) Farrokhbakht, H ; Kamali, H. M ; Hessabi, S
    2017
    Abstract
    Reducing the size of the technology increases leakage power in Network-on-Chip (NoC) routers drastically. Power-gating, particularly in NoC routers, is one of the most efficient approaches for alleviating the leakage power. Although applying power-gating techniques alleviates NoC power consumption due to high proportion of idleness in NoC routers, since the timing behavior of packets is irregular, even in low injection rates, performance overhead in power-gated routers is significant. In this paper, we present SMART, a Scalable Mapping And Routing Technique, with virtually no area overhead on the network. It improves the irregularity of the timing behavior of packets in order to mitigate... 

    Minimum control effort trajectory planning and tracking of the CEDRA brachiation robot [electronic resource]

    , Article Robotica ; Robotica / Volume 31 / Issue 07 / October 2013, pp 1119-1129 Meghdari, A. (Ali) ; Lavasan, S. M. H ; Norouz, M ; Rahimi Mousavi, M. S ; Sharif University of Technology
    Abstract
    The control of a brachiation robot has been the primary objective of this study. A brachiating robot is a type of a mobile arm that is capable of moving from branch to branch similar to a long-armed ape. In this paper, to minimize the actuator work, Pontryagin's minimum principle was used to obtain the optimal trajectories for two different problems. The first problem considers “brachiation between fixed branches with different distance and height,” whereas the second problem deals with the “brachiating and catching of a moving target branch”. Theoretical results show that the control effort in the proposed method is reduced by 25% in comparison with the “target dynamics” method which was...