Loading...
Search for:
haghjou--n
0.129 seconds
Total 3243 records
Sustained release intraocular drug delivery devices for treatment of uveitis
, Article Journal of Ophthalmic and Vision Research ; Volume 6, Issue 4 , Oct , 2011 , Pages 317-319 ; 20082010 (ISSN) ; Soheilian, M ; Abdekhodaie, M. J ; Sharif University of Technology
2011
Abstract
Corticosteroids have been the mainstay of uveitis therapy. When intraocular inflammation is unresponsive to steroids, or steroid related side effects become a concern, steroid-sparing medications may be administered which can be classified into immunosuppressive and immunomodulatory agents. Uveitis treatment can be delivered systemically, topically, periocularly or intraocularly. All of the above mentioned medications can entail significant systemic side effects, particularly if administered for prolonged durations, which may become treatment-limiting. Some medications, particularly hydrophobic compounds, may poorly cross the blood-retinal barrier. Topical medications, which have the least...
Retina-choroid-sclera permeability for ophthalmic drugs in the vitreous to blood direction: quantitative assessment
, Article Pharmaceutical research ; Volume 30, Issue 1 , January , 2013 , Pages 41-59 ; 1573904X (ISSN) ; Abdekhodaie, M. J ; Cheng, Y. L ; Sharif University of Technology
2013
Abstract
To determine the outward permeability of retina-choroid-sclera (RCS) layer for different ophthalmic drugs and to develop correlations between drug physicochemical properties and RCS permeability. A finite volume model was developed to simulate pharmacokinetics in the eye following drug administration by intravitreal injection. The RCS permeability was determined for 32 compounds by best fitting the drug concentration-time profile obtained by simulation with previously reported experimental data. Multiple linear regression was then used to develop correlations between best fit RCS permeability and drugs physicochemical properties. The RCS drug permeabilities had values that ranged over 3 ×...
Retina-Choroid-Sclera Permeability for Ophthalmic Drugs in the Vitreous to Blood Direction: Quantitative Assessment
, Article Pharmaceutical Research ; 2012 , Pages 1-19 ; 07248741 (ISSN) ; Abdekhodaie, M. J ; Cheng, Y. L ; Sharif University of Technology
Springer
2012
Abstract
Purpose: To determine the outward permeability of retina-choroid-sclera (RCS) layer for different ophthalmic drugs and to develop correlations between drug physicochemical properties and RCS permeability. Methods: A finite volume model was developed to simulate pharmacokinetics in the eye following drug administration by intravitreal injection. The RCS permeability was determined for 32 compounds by best fitting the drug concentration-time profile obtained by simulation with previously reported experimental data. Multiple linear regression was then used to develop correlations between best fit RCS permeability and drugs physicochemical properties. Results: The RCS drug permeabilities had...
Simulation of Intravitreal Drug Delivery Systems
, Ph.D. Dissertation Sharif University of Technology ; Abd Khodaei, Mohammad Jafar (Supervisor)
Abstract
As diseases of eye’s posterior segment has got widespread outbreak in the world, the selection of treatment is very important. Until now, intravitreal injecton has been the most common way of drug delivery to the posterior segment. Although this method is effective, halflife of some drugs in the vitreous cavity, especially those with low molecular weight, is just about some hours. Therefore, it is necessary to repeat injection in order to maintain drug concentration level of the posterior segment in the desired level. Intravitreal injection is invasive and may cause severe adverse effects such as vitreous hemorrhage, retinal detachment, endophthalmitis and cataract. In order to decrease the...
Computer modeling of drug distribution after intravitreal administration
, Article World Academy of Science, Engineering and Technology ; Volume 77 , 2011 , Pages 706-716 ; 2010376X (ISSN) ; Abdekhodaie, M. J ; Cheng, Y. L ; Saadatmand, M ; Sharif University of Technology
2011
Abstract
Intravitreal injection (IVI) is the most common treatment for eye posterior segment diseases such as endopthalmitis, retinitis, age-related macular degeneration, diabetic retinopathy, uveitis, and retinal detachment. Most of the drugs used to treat vitreoretinal diseases, have a narrow concentration range in which they are effective, and may be toxic at higher concentrations. Therefore, it is critical to know the drug distribution within the eye following intravitreal injection. Having knowledge of drug distribution, ophthalmologists can decide on drug injection frequency while minimizing damage to tissues. The goal of this study was to develop a computer model to predict intraocular...
Recent activities in science and technology and the progress of women in physics in the last three years in Iran
, Article AIP Conference Proceedings, Stellenbosch ; Volume 1517 , 2013 , Pages 108-109 ; 0094243X (ISSN); 9780735411388 (ISBN) ; Azad, M. T ; Mahmoudi, N ; Izadipanah, N ; Eshghi, N ; Sharif University of Technology
2013
Abstract
For the 4th IUPAP International Conference of Women in Physics, we report on activities in science and engineering in Iran, and conditions for women in physics, in the three years since the 3rd IUPAP International Conference of Women in Physics was held in 2008. Iran has made prominent advancements and astonishing progress in laser technology, biotechnology, nanotechnology, genetics, computer software and hardware, and robotics. Iranian scientists have been very productive in several experimental fields, such as pharmaceutical, organic, and polymer chemistry. Conditions for women in physics have improved greatly in recent years. A project to improve the environment for learning physics, and...
Lead-free MAGeI3 as a suitable alternative for MAPbI3 in nanostructured perovskite solar cells: a simulation study
, Article Environmental Science and Pollution Research ; Volume 30, Issue 19 , 2023 , Pages 57032-57040 ; 09441344 (ISSN) ; Akhavan, O ; Rabiee, N ; Afshar, E. N ; Zare, E. N ; Sharif University of Technology
Springer Science and Business Media Deutschland GmbH
2023
Abstract
The lead is a heavy metal with hazardous impacts on environment and human life. Lead-free perovskite solar cells have attracted much attention in recent years, due to eco-friendly characteristics. Meanwhile, Pb-containing cells showed the highest efficiencies among the various types of cells. Hence, designing novel Pb-free solar cells with comparable or better performance than the Pb-containing ones is highly required. In this work, a lead-free methyl-ammonium-germanium-iodide (MAGeI3)-based perovskite solar cell with ITO/TiO2/MAGeI3/Spiro-OMeTAD/Ag multilayer nanostructure has been proposed and its main characteristics including open-circuit voltage (VOC) and power conversion efficiency (η)...
Ab initio study of electronic effects in the ZnO/TiO2 core/shell interface: Application in dye sensitized solar cells
, Article RSC Advances ; Vol. 4, issue. 1 , April , 2014 , p. 301-307 ; Nafari, N ; Taghavinia, N ; Sharif University of Technology
2014
Abstract
Core/shell structure of ZnO nanowires coated with a monolayer of TiO 2 is investigated using Density Functional Theory (DFT). The electronic states of the semiconductor is calculated and compared before and after coating of the TiO2 monolayer on a ZnO [101 0] surface. The effect of TiO2 coating induce surface states changes and shifts the conduction and valence band edges to higher energies. Our results, in qualitative agreement with the experimental work of Matt Law et al. (J. Phys. Chem. B, 110, 22652), show an increase in open circuit voltage and a decrease in short circuit current in ZnO/TiO2 core shell dye sensitized solar cells. Regarding the semiconductor density of states (DOS), TiO2...
Analyzing factors effective on the development of relationship commitment
, Article Proceedings of the 2012 International Conference on Artificial Intelligence, ICAI 2012, 16 July 2012 through 19 July 2012 ; Volume 1 , July , 2012 , Pages 398-404 ; 1601322186 (ISBN) ; 9781601322180 (ISBN) ; Lotfi, N ; Karami, N ; Sharif University of Technology
2012
Abstract
Due to the important role of commitment and trust in the relationship marketing, the factors which can directly result in a committed relationship along with the factors which can influence the commitment through influencing trust, according to the model of commitment and trust by (Morgan & Hunt, 1994) have been introduced and their level of importance has been investigated here. The article uses fuzzy cognitive maps (FCMs) in the proposed model to find the most important paths leading to relationship commitment. The FCM analyzes the responses of a group of 30 people including general practitioners in dentistry, managers of dental departments in some of the public clinics and hospitals who...
Morphological dependence of light backscattering from metallic back reflector films: Application in dye-sensitized solar cells
, Article Physica Status Solidi (A) Applications and Materials Science ; Volume 212, Issue 4 , January , 2015 , Pages 785-790 ; 18626300 (ISSN) ; Ghazyani, N ; Taghavinia, N ; Sharif University of Technology
Wiley-VCH Verlag
2015
Abstract
Conventionally, a film of TiO2 particles of 300 nm size is employed in Dye-sensitized solar cells (DSCs) as the back reflector film to enhance the light harvesting. Perfect reflectance of silver in visible and near infrared motivates to investigate its potential as the material for the light back reflector film in DSCs. In this study, light back reflector films consisting of 300 nm-sized silver particles, as well as vacuum evaporated silver flat film, were fabricated and compared to 300 nm-sized rutile-type TiO2 particulate reflector film to study their optical aspects. Conventional TiO2 rutile-type particulate film demonstrates slightly lower performance...
Monolithic dye sensitized solar cell with metal foil counter electrode
, Article Organic Electronics ; Volume 57 , June , 2018 , Pages 194-200 ; 15661199 (ISSN) ; Taghavinia, N ; Ghazyani, N ; Sharif University of Technology
Elsevier B.V
2018
Abstract
Monolithic dye-sensitized solar cells are conventionally fabricated using carbon composite layer as the counter electrode. In the current research, the brittle carbon composite layer is replaced with a metal foil, aiming to decrease the device series resistance and using less catalyst material in counter electrode. This metallic structure has also an advantage of mechanical strength and decreases the fabrication complexity. The counter electrode is prepared by electrodepositing Cr film followed by electrodepositing Pt nanoparticles on a metal foil. As the porous spacer layer, different composite layers of SiO2, TiO2, and Al2O3 are investigated and the best results are obtained for TiO2...
A compact versatile microbial fuel cell from paper
, Article ASME 2013 11th Int. Conf. on Fuel Cell Science, Eng. and Technology Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 7th Int. Conf. on Energy Sustainability, FUELCELL 2013 ; 2013 ; 9780791855522 (ISBN) ; Hashemi, N ; Hashemi, N ; Sharif University of Technology
2013
Abstract
Microbial fuel cells (MFCs) have been a potential green energy source for a long time but one of the problems is that either the technology must be used on a large scale or special equipment have been necessary to keep the fuel cells running such as syringe pumps. Paper-based microbial fuel cells do not need to have a syringe pump to run and can run entirely by themselves when placed in contact with the fluids that are necessary for it to run. Paper-based microbial fuel cells are also more compact than traditional MFCs since the device doesn't need any external equipment to run. The goal of this paper is to develop a microbial fuel cell that does not require a syringe pump to function. This...
Decentralized model predictive voltage control of islanded DC microgrids
, Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 ; Mahdian Dehkordi, N ; Sadati, N ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2020
Abstract
This paper proposes a novel decentralized control approach for islanded direct-current (DC) microgrids (MGs) based on model predictive control (MPC) to regulate the distributed generation unit (DGU) output voltages, i.e. the voltages of the point of common coupling (PCC). A local controller is designed for each DGU, in the presence of uncertainties, disturbances, and unmodeled dynamics. First, a discrete-time state-space model of an MG is derived. Afterward, an MPC algorithm is designed to perform the PCC voltage control. The proposed MPC scheme ensures that the PCC voltages remain within an acceptable range. Several simulation studies have been conducted to illustrate the effectiveness of...
Intelligent optimal feed-back torque control of a 6DOF surgical rotary robot
, Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 ; Ebrahimi Toulkani, N ; Zhilakzadeh, N ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2020
Abstract
Sophisticated surgeons are widely indicating the use of surgical robots in order to reject human error, increase precision, and speed. Among well-known robotic mechanisms, parallel robots are broadly more investigated regarding their special characters as higher acceleration, speed, and accuracy, and less weight. Specific surgical procedures confine, and restrict their workspace, while controlling and validating the robots are complicated regarding to their complex dynamic. To this end, in this paper, a 6-DOF robot, with rotary manipulators, is designed and controlled. Addressing nonlinearity of parallel robots, an innovative methodology is formulated to robustly penalize the error of...
Semi-Real evaluation, and adaptive control of a 6DOF surgical robot
, Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 ; Ebrahimi Toulkani, N ; Zhilakzadeh, N ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2020
Abstract
Sophisticated surgeons are widely indicating the use of surgical robots in order to reject human error, increase precision, and speed. Among well-known robotic mechanisms, parallel robots are broadly more investigated regarding their special characters as higher acceleration, speed, and accuracy, and less weight. Specific surgical procedures confine and restrict their workspace, while controlling and validating the robots are complicated based on their complex dynamic. To this end, in this paper, a 6-DOF robot, with linear manipulators, is designed and controlled. Addressing the inherent nonlinearity of the robot mechanism, an adaptive PID manipulator is employed and validated with nonlinear...
Modeling superconductive fault current limiter using constructive neural networks
, Article 2007 IEEE International Symposium on Industrial Electronics, ISIE 2007, Caixanova - Vigo, 4 June 2007 through 7 June 2007 ; 2007 , Pages 2859-2863 ; 1424407559 (ISBN); 9781424407552 (ISBN) ; Sadati, N ; Hosseini, M. N ; Sharif University of Technology
2007
Abstract
Although so many advances have been proposed in the field of artificial intelligence and superconductivity, there are few reports on their combination. On the other hand, because of the nonlinear and multivariable characteristics of the superconductive elements and capabilities of neural networks in this field, it seems useful to apply the neural networks to model and control the superconductive phenomena or devices. In this paper, a new constructive neural network (CNN) trained by two different optimization algorithms; back-propagation and genetic algorithm, is proposed which models the behavior of the superconductive fault current limiters (SFCLs). Simulation results show that the proposed...
Satellite attitude tracking using optimal neuro-controller
, Article 2003 IEEE Aerospace Conference, Big Sky, MT, 8 March 2003 through 15 March 2003 ; Volume 6 , 2003 , Pages 2663-2669 ; 1095323X (ISSN); 078037651X (ISBN); 9780780376519 (ISBN) ; Sadati, N ; Tehrani, N. D ; Sharif University of Technology
2003
Abstract
In this paper, a new control strategy for optimal attitude tracking control of a multivariable satellite system has been presented. The approach is based on a Multilayer Perceptron Neural Network (MLPNN) and a classical PD Controller for its initial stabilization. It is shown how the network can be employed as a multivariable self-organizing and self-learning controller in conjunction with a PD controller for attitude control of a satellite. By using three thrusters and quaternion for kinematics representation, the attitude dynamics of the satellite has been presented. In contrast to the previous classical approaches, it is shown how this controller can be carried out in an on-line manner...
Effect of heat treatment cycle on the mechanical properties of machinable austempered ductile iron
, Article 16th International Metallurgical and Materials Conference, METAL 2007, 22 May 2007 through 24 May 2007 ; 2007 ; Baghersaee, N ; Varahram, N ; Hanumantha Rao, M ; Rao, G. V.S. N ; Sharif University of Technology
TANGER spol. s r.o
2007
Abstract
ADI have been used for a wide variety of application in automotive,rail,and heavy engineering industry because of its excellent mechanical properties such as high strength with good ductility,good wear resistance,and good fatigue properties. The properties of austempered ductile iron are dependent on both chemistry and heat treatment, which has lead to invention of MADI (machinable austempered ductile iron). MADI is a new class of ductile iron with superior mechanical property than regular ductile iron with the same machinability characteristic. In this study Different cycles of austempering process (austenitization and austempering cycle) applied Due to the effect of heat treatment cycle on...
Effect of heat treatment cycle on the mechanical properties of machinable austempered ductile iron
, Article 24th ASM International Heat Treating Conference and Exposition, Detroit, MI, 17 September 2007 through 19 September 2007 ; 2007 , Pages 323-327 ; 9781604239300 (ISBN) ; Baghersaee, E. N ; Varahram, N ; Rao, M. H ; Rao, G. V. S. N ; Sharif University of Technology
2007
Abstract
ADI have been used for a wide variety of applications in automotive, rail, and heavy engineering industry because of its excellent mechanical properties such as high strength with good ductility, good wear resistance, and good fatigue properties. The properties of austempered ductile iron are dependent on both chemistry and heat treatment, which has lead to invention of MADI (machinable austempered ductile iron). MADI is a new class of ductile iron with superior mechanical property than regular ductile iron with the same machinability characteristic. In this study Different cycle of austempering process (austenitization and austempering cycle) applied Due to the effect of heat treatment...
Dynamic relay selection and resource allocation in cooperative networks based on OFDM
, Article 17th European Wireless Conference 2011, EW 2011 ; 2011 , Pages 328-332 ; (Print ISBN): 978-3-8007-3343-9 ; Alizadeh, N. N ; Razavizadeh, S. M ; Sharif University of Technology
2011
Abstract
In this paper, we are planning to introduce a new method for relay selection and resource allocation in OFDM-based cooperative networks. Up to now, there have been relatively few works clearly concentrating on the combination of relay selection and resource allocation in such networks. In our work, a network with a single transmitter, a single receiver and a group of relays is considered. Relays work on Amplify and Forward (AF) method and there is no direct link between the transmitter and the receiver. The optimization problem is to maximize the throughput of the receiver with constraints on the amounts of the power of the transmitter and relays, and subcarriers. We will introduce an...