Loading...
Search for: haile--l--m
0.149 seconds

    A mechanobiological mathematical model of liver metabolism

    , Article Biotechnology and Bioengineering ; Volume 117, Issue 9 , 5 June , 2020 , Pages 2861-2874 Nikmaneshi, M. R ; Firoozabadi, B ; Munn, L. L ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    The liver plays a complex role in metabolism and detoxification, and better tools are needed to understand its function and to develop liver-targeted therapies. In this study, we establish a mechanobiological model of liver transport and hepatocyte biology to elucidate the metabolism of urea and albumin, the production/detoxification of ammonia, and consumption of oxygen and nutrients. Since hepatocellular shear stress (SS) can influence the enzymatic activities of liver, the effect of SS on the urea and albumin synthesis are empirically modeled through the mechanotransduction mechanisms. The results demonstrate that the rheology and dynamics of the sinusoid flow can significantly affect... 

    Investigation of low back pain using system modeling

    , Article Advanced Science Letters ; Volume 19, Issue 5 , 2013 , Pages 1260-1264 ; 19366612 (ISSN) Khan, M. F ; Malik, A. S ; Xia, L ; Wang, J. L ; Nikkhoo, M ; Parnianpour, M ; Khan, M. I ; Sharif University of Technology
    2013
    Abstract
    This paper focuses on characterization of intervertebral disc behavior upon fatigue stress. It consists in in-vitro experiments to measure intervertebral disc deformation with regard to forces applied to produce fatigues test. In this paper, a system modeling based non-invasive method to assess back pain is proposed which may be used for designing of prediction model to predict the failure of intervertebral disc (IVD) experiencing fatigue loading. An artificial compression fracture was simulated in the lower level of vertebra followed by a poly(methyl methacrylate) (PMMA) bone cement injection. Fatigue loading was applied on the specimens and the load was incrementally increased form 650 N... 

    A state-of-the-art model for spatial and stochastic oil spill risk assessment: A case study of oil spill from a shipwreck

    , Article Environment International ; Volume 126 , 2019 , Pages 309-320 ; 01604120 (ISSN) Amir Heidari, P ; Arneborg, L ; Lindgren, J. F ; Lindhe, A ; Rosén, L ; Raie, M ; Axell, L ; Hassellöv, I. M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Oil spills are serious environmental issues that potentially can cause adverse effects on marine ecosystems. In some marine areas, like the Baltic Sea, there is a large number of wrecks from the first half of the 20th century, and recent monitoring and field work have revealed release of oil from some of these wrecks. The risk posed by a wreck is governed by its condition, hazardous substances contained in the wreck and the state of the surrounding environment. Therefore, there is a need for a common standard method for estimating the risks associated with different wrecks. In this work a state-of-the-art model is presented for spatial and stochastic risk assessment of oil spills from... 

    On low back pain: Identification of structural changes in system parameters for fatigue loaded intervertebral disc using PCA

    , Article ICIAS 2012 - 2012 4th International Conference on Intelligent and Advanced Systems: A Conference of World Engineering, Science and Technology Congress (ESTCON) - Conference Proceedings, 12 June 2012 through 14 June 2012 ; Volume 1 , June , 2012 , Pages 378-381 ; 9781457719677 (ISBN) Khan, M. F ; Malik, A. S ; Rozana, F ; Xia, L ; Nikkhoo, M ; Wang, J. L ; Parnianpour, M ; Sharif University of Technology
    2012
    Abstract
    This paper presents the background of low back problem caused by repetitive fatigue loading. We emphasize on mechanism of Intervertebral Disc (IVD) and conditions for which the disc does not recover its original status under repetitive work and cause low back pain. The objective of this study is to identify structural changes in system parameters for fatigue loaded intervertebral disc. Principal component analysis (PCA) is used for studying the behavioral change of spine against cyclic loading as a function of time. Percentage difference and similarity factor was calculated for the analysis. Specimens were applied with impulse testing to measure the stiffness and acceleration after fracture,... 

    Fatigue loaded intervertebral disc analysis for low back pain using nonlinear black-box model

    , Article IFMBE Proceedings ; Volume 39 , 2013 , Pages 513-517 ; 16800737 (ISSN) ; 9783642293047 (ISBN) Khan, M. F ; Malik, A. S ; Xia, L ; Nikkhoo, M ; Wang, J. L ; Parnianpour, M ; Humayun, J ; Sharif University of Technology
    2013
    Abstract
    This paper presents recent developments on effects of rest and fatigue loading on properties of healthy vertebra discs. A comparison of different approaches used in literature to study the properties of intervertebral disc is presented. The major achievements in this area so far are discussed in the context of their advantages and disadvantages. The past approaches are based on bio-mechanical models which mostly used statistical techniques for the analysis and estimation of fatigue loaded Intervertebral Disc (IVD). However, those modeling techniques were not flexible enough for analysis of customized tests. In this paper, we applied System Identification (SI) based NLARX modeling technique... 

    Adaptive thermal modeling of Li-ion batteries

    , Article Electrochimica Acta ; Volume 102 , 2013 , Pages 183-195 ; 00134686 (ISSN) Shadman Rad, M ; Danilov, D. L ; Baghalha, M ; Kazemeini, M ; Notten, P. H. L ; Sharif University of Technology
    2013
    Abstract
    An accurate thermal model to predict the heat generation in rechargeable batteries is an essential tool for advanced thermal management in high power applications, such as electric vehicles. For such applications, the battery materials' details and cell design are normally not provided. In this work a simple, though accurate, thermal model for batteries has been developed, considering the temperature- and current-dependent overpotential heat generation and State-of-Charge dependent entropy contributions. High power rechargeable Li-ion (7.5 Ah) batteries have been experimentally investigated and the results are used for model verification. It is shown that the State-of-Charge dependent... 

    Influence of crossflow microfiltration on ceramic membrane fouling and beer quality

    , Article Desalination and Water Treatment ; Volume 51, Issue 22-24 , 2013 , Pages 4302-4312 ; 19443994 (ISSN) Kazemi, M. A ; Soltanieh, M ; Yazdanshenas, M ; Fillaudeau, L ; Sharif University of Technology
    Taylor and Francis Inc  2013
    Abstract
    In this article, an experimental investigation has been carried out to determine the types of fouling phenomena that occur during clarification of dilute malt extract (DME) and pasteurization of clarified beer (CB) by a tubular ceramic membrane in a crossflow pilot plant. Using the classical models, the predominant fouling mechanism responsible for flux decline was found to be complete blocking of the membrane pores followed by formation of a compressible cake layer of yeast cell in the case of DME clarification, whereas the internal fouling of the membrane occurs during pasteurization of CB. The effects of operating parameters, including temperature, transmembrane pressure, and crossflow... 

    In situ LIF temperature measurements in aqueous ammonium chloride solution during uni-directional solidification

    , Article Experiments in Fluids ; Volume 48, Issue 4 , April , 2010 , Pages 651-662 ; 07234864 (ISSN) Shafii, M. B ; Lum, C. L ; Koochesfahani, M. M ; Sharif University of Technology
    2010
    Abstract
    We present in situ whole-field measurements of the temperature field using laser-induced fluorescence in a study of bottom-chilled uni-directional solidification of aqueous ammonium chloride. We utilize a two-color, two-dye, ratiometric approach to address the significant spatial and temporal variations of laser sheet intensity field due to refractive index variations caused by the evolving concentration and temperature fields. In our work we take advantage of two temperature sensitive fluorescent dyes with opposite temperature sensitivities in order to increase the overall sensitivity and temperature resolution of the measurements. The resulting temperature sensitivity (about 4% K-1) is... 

    Thermoeconomic analysis and optimization of post-combustion CO2 recovery unit utilizing absorption refrigeration system for a natural-gas-fired power plant

    , Article Environmental Progress and Sustainable Energy ; Volume 37, Issue 3 , 2018 , Pages 1075-1084 ; 19447442 (ISSN) Shirmohammadi, R ; Soltanieh, M ; Romeo, L. M ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Exergy and exergoeconomic analyses have been used to set out weaknesses of the postcombustion CO2 capture unit of Besat power plant that uses an ammonia absorption refrigeration system for CO2 liquefaction. The energy required for the absorption system is provided by the flue gas. The liquefied CO2 is used for beverage and food industries. The exergoeconomic costs of all utility streams and processes are calculated through a systematic method of assigning exergetic cost relations to the streams. The results point out that the exergy destruction of the CO2 stripper and absorber columns are the highest, and according to the cost-based information, potential locations for the process... 

    Damage behavior of fiber reinforced composite plates subjected to drop weight impacts

    , Article Composites Science and Technology ; Volume 66, Issue 1 , 2006 , Pages 61-68 ; 02663538 (ISSN) Hosseinzadeh, R ; Shokrieh, M. M ; Lessard, L ; Sharif University of Technology
    2006
    Abstract
    Fiber reinforced materials are widely used in many industrial structures including automotive, aviation, and civil due to their lower weights compared to metal structures. Full-composite body structures, especially in automotive and aviation applications, are becoming a proper replacement for current metal ones. For this reason, damage of such structures subjected to impact is a crucial case study in current research. The typical types of damages are mainly caused during production, repair, maintenance, or by particle crashes during function, and collisions between different structures. In this paper, four different fiber reinforced composite plates are studied after being impacted by a... 

    Dielectrophoretic cell sorting via sliding cells on 3D silicon microelectrodes

    , Article Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 22 January 2017 through 26 January 2017 ; 2017 , Pages 147-150 ; 10846999 (ISSN) ; 9781509050789 (ISBN) Xing, X ; Chan, M. L ; Roshan, K. A ; Yobas, L ; Sharif University of Technology
    2017
    Abstract
    This work presents an innovative design for a flow-through dielectrophoretic cell sorting based on silicon bulk microelectrodes featuring sidewall undercuts. The microelectrodes are configured into an interdigitated array with digits extending across the flow chamber at an oblique angle against the flow stream. Target cells under dielectrophoretic forces and hydrodynamic drag can slide along the digits to a dedicated outlet. The design has been showcased for continuous-flow sorting of viable and non-viable mammalian cells, achieving a throughput of 16,600 cells/min, an order of magnitude higher than those reported for existing continuous-flow cell sorting designs using thin-film or... 

    A multi-scale model for determining the effects of pathophysiology and metabolic disorders on tumor growth

    , Article Scientific Reports ; Volume 10, Issue 1 , 20 February , 2020 Nikmaneshi, M. R ; Firoozabadi, B ; Mozafari, A ; Munn, L. L ; Sharif University of Technology
    Nature Research  2020
    Abstract
    The search for efficient chemotherapy drugs and other anti-cancer treatments would benefit from a deeper understanding of the tumor microenvironment (TME) and its role in tumor progression. Because in vivo experimental methods are unable to isolate or control individual factors of the TME and in vitro models often do not include all the contributing factors, some questions are best addressed with systems biology mathematical models. In this work, we present a new fully-coupled, agent-based, multi-scale mathematical model of tumor growth, angiogenesis and metabolism that includes important aspects of the TME spanning subcellular-, cellular- and tissue-level scales. The mathematical model is... 

    Deviatoric stress response envelopes from multiaxial tests on sand

    , Article Solid Mechanics and its Applications ; Volume 146 , 2007 , Pages 253-262 ; 09250042 (ISSN); 9781402061455 (ISBN) Wood, D. M ; Sadek, T ; Dihoru, L ; Lings, M. L ; Sharif University of Technology
    Springer Verlag  2007
    Abstract
    Sets of rosettes of stress probes have been performed on Hostun sand in a flexible boundary true triaxial apparatus. These have shown the effect of stress history on the local distortional stiffness of the sand. Histories have included isotropic compression, and deviatoric paths with increasingly complex shapes. These tests were performed and interpreted against a background of kinematic hardening and bounding surface plasticity, using stress response envelopes to reveal evolving distortional stiffness. Use of response envelopes to study volumetric stiffness appears to be less helpful but the phase transformation surfaces that can be extracted seem somewhat independent of recent stress... 

    Preconcentration and determination of carbaryl and carbofuran in water samples using ionic liquids and in situ solvent formation microextraction

    , Article Analytical Methods ; Volume 5, Issue 9 , 2013 , Pages 2406-2412 ; 17599660 (ISSN) Tehrani, M. S ; Givianrad, M. H ; Akhoundi, L ; Akhoundi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work, a novel microextraction method named in situ solvent formation microextraction (ISFME) using ionic liquids (ILs) for preconcentration of carbaryl and carbofuran in water samples is introduced. In this method, a small amount of sodium hexafluorophosphate (NaPF6), as an ion pairing agent, was added to a sample solution containing a small quantity of 1-hexyl-3-methylimidazolium tetrafluoroborate [Hmim][BF4] as a hydrophobic ionic liquid. A cloudy solution formed as a result of formation of fine droplets of 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6]. After centrifugation, the fine droplets of the extractant phase settled to the bottom of the conical-bottom... 

    Highly efficient one-pot three-component Mannich reaction in water catalyzed by heteropoly acids [electronic resource]

    , Article Org. Lett ; 2006, 8, 2079-2082 Azizi, N. (Najmodin) ; Torkian, L ; Saidi, M. R ; Sharif University of Technology
    Abstract
    Heteropoly acids efficiently catalyzed the one-pot, three-component Mannich reaction of ketones with aromatic aldehydes and different amines in water at ambient temperature and afforded the corresponding β-amino carbonyl compounds in good to excellent yields and with moderate diastereoselectivity. This method provides a novel and improved modification of the three-component Mannich reaction in terms of mild reaction conditions and clean reaction profiles, using very a small quantity of catalyst and a simple workup procedure  

    A Three dimensional dynamic CFD simulation for the direct dme production in a fixed bed reactor

    , Article Computer Aided Chemical Engineering ; Volume 32 , June , 2013 , Pages 247-252 ; 15707946 (ISSN) Moradi, F ; Kazemeini, M ; Vafajoo, L ; Fattahi, M ; Sharif University of Technology
    2013
    Abstract
    Dimethyl ether (DME) as a clean fuel seems to be a superior candidate for high-quality diesel fuel in near future. In this study, a comprehensive three-dimensional dynamic heterogeneous model developed to simulate the flow behavior and catalytic coupling reactions for synthesis of the DME from hydrogenation of the CO and CO2, dehydration of methanol to dimethyl ether and water gas shift reaction in a fixed bed reactor. For this purpose, a CFD simulation was articulated where the standard k-ε model with 10% turbulence tolerations implemented. Then the concentration and temperature profiles along the reactor were determined. It was revealed that under conditions considered, a single phase... 

    Preparation, physiochemical and kinetic investigations of V2O5/SiO2 catalyst for sulfuric acid production

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 29, Issue 11 , 2016 , Pages 1478-1488 ; 1728144X (ISSN) Tavassoli, A ; Kazemeini, M ; Fattahi, M ; Vafajoo, L ; Sharif University of Technology
    Materials and Energy Research Center  2016
    Abstract
    V2O5/SiO2 catalyst utilized to oxidize the SO2 to SO3 species in the presence of oxygen mainly for producing sulfuric acid. For this catalyst, the active phase was a mixture of vanadium pentoxide and basic sulfate/pyrosulfate material. This active phase at the reaction temperature behaved as a liquid filling up the pores of the silica support. On the other hand, amounts of the SO3 and V5+ species in the catalyst necessarily varied with the concentration of the feed material and temperature rendering complexity to the kinetics of the SO2 oxidation reaction. In the current research, the catalyst preparation with different amounts of such materials was undertaken. Purified Diatomaceous earth of... 

    Physicochemical properties and catalytic performances of nanostructured V2O5 over TiO2 and γ-Al2O3 for oxidative dehydrogenation of propane

    , Article Chemical and Biochemical Engineering Quarterly ; Volume 30, Issue 1 , 2016 , Pages 9-18 ; 03529568 (ISSN) Kazemeini, M ; Nikkhah, M ; Fattahi, M ; Vafajoo, L ; Sharif University of Technology
    Assoc. of Chemists and Chemical Engineers of Croatia  2016
    Abstract
    Samples of V2O5 catalysts supported on nanostructures of TiO2 and γ-Al2O3 were synthesized through the hydrothermal method and used for the oxidative dehydrogenation of propane (ODHP) to propylene. The TiO2 support was utilized in both commercial microstructure and synthesized nanostructure forms. Moreover, the γ-Al2O3 support was synthesized through chemical and precipitation methods. The vanadium catalyst was then deposited onto the hybrid of the TiO2 and γ-Al2O3 materials. All prepared catalysts were characterized through the BET, FESEM, FTIR, XRD and TPR techniques. Performances of the synthesized catalysts were subsequently examined in a fixed-bed reactor. The main products were... 

    Interference efficiency: A new concept to analyze the performance of cognitive radio networks

    , Article 2017 IEEE International Conference on Communications Workshops, ICC Workshops 2017, 21 May 2017 through 25 May 2017 ; 2017 , Pages 1105-1110 ; 9781509015252 (ISBN) Mili, M. R ; Musavian, L ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, we develop and analyze a novel performance metric, called interference efficiency (IE), that shows the number of transmitted bits per unit of interference energy imposed on the primary users (PUs) in an underlay cognitive radio network (CRN). Specifically, we develop a framework to maximize the IE of a CRN with multiple secondary users (SUs) while satisfying target constraints on the average interference power on PU receiver, total SUs transmit power and minimum ergodic rate for the SUs. In doing so, we formulate a multiobjective optimization problem (MOP), that aims to achieve the maximum ergodic sum rate of multiple SUs and the minimum average interference power on the... 

    Interference efficiency: A new metric to analyze the performance of cognitive radio networks

    , Article IEEE Transactions on Wireless Communications ; Volume 16, Issue 4 , 2017 , Pages 2123-2138 ; 15361276 (ISSN) Mili, M. R ; Musavian, L ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, we develop and analyze a novel performance metric, called interference efficiency, which shows the number of transmitted bits per unit of interference energy imposed on the primary users (PUs) in an underlay cognitive radio network (CRN). Specifically, we develop a framework to maximize the interference efficiency of a CRN with multiple secondary users (SUs) while satisfying target constraints on the average interference power, total transmit power, and minimum ergodic rate for the SUs. In doing so, we formulate a multiobjective optimization problem (MOP) that aims to maximize ergodic sum rate of SUs and to minimize average interference power on the primary receiver. We solve...