Loading...
Search for:
hajjar--zeinab
0.099 seconds
Synthesis, Evaluation and Modification of Suitable Metal–Organic Frameworks (MOFS) for Desulfurization of Hydrocarbon Cuts
, M.Sc. Thesis Sharif University of Technology ; Khorashe, Farhad (Supervisor) ; Hajjar, Zeinab (Co-Supervisor) ; Soltanali, Saeed (Co-Supervisor)
Abstract
During fuel combustion, aromatic sulfur compounds in energy fuels convert into sulfur oxides, which cause major environmental problems such as acidic rain, global warming, and air pollution. Absorption desulfurization is one of the promising and economical methods to remove these sulfur compounds from fuels. Metal-organic frameworks (MOFs) are a class of nanoporous materials that are of interest for use as adsorbents due to their high specific surface area, unique surface adsorption properties, high adsorption capacity, tunable porosity, flexible dynamic behavior, and diversity in functional and metal groups. In this research, we first synthesized five metal-organic frameworks, namely...
Reduction of Sulfur Content of Model Feed by Oxidative Process in them Presence of Carbon Structures Based W-Mo Nanocatalysts
, Ph.D. Dissertation Sharif University of Technology ; Kazemini, Mohammad (Supervisor) ; Rashidi, Alimorad (Supervisor) ; Hajjar, Zeinab (Co-Supervisor)
Abstract
In this research, molybdenum and tungsten catalysts modified with cobalt and nickel on a carbon support have been synthesized and investigated in the oxidation desulfurization process. A model fuel was used to evaluate the synthesized catalysts. This model fuel was n-decane. dibenzothiophene was also used as a sulfur model. The synthesized catalysts were subjected to various analyzes such as XRD, FTIR, Raman, BET-BJH, NH3-TPD, TEM and ICP-OES for structural evaluation. On the other hand, synthetic parameters such as metal loading rate, molar or weight ratio of secondary metal (cobalt and nickel) to primary metal (molybdenum and tungsten) and molar ratio of citric acid to primary metal as...
NOx Reduction from the Exhaust Gas of Marine Diesel Engines Using Non-Thermal Plasma
, M.Sc. Thesis Sharif University of Technology ; Borghei, Mehdi (Supervisor) ; Hamzehlouyan, Tayebeh (Supervisor) ; Hajjar, Zeinab (Supervisor) ; Khani, Mohammad Reza (Supervisor)
Abstract
Environmental regulations with respect to the marine diesel emissions have become stricter during recent years, thereby imposing traffic limitations on Iranian ships preventing them to enter emission control areas. Nitrogen oxides (NOx), as one of most important air pollutants, have adverse impacts on public health and ecosystem, so as the ships are the primary source of NOx internationally, the after-treatment system finds more urge to be developed. In this study, a NOx reduction system using non-thermal plasma technology is studied in order to determine its application and efficiency for NOx removal from the exhaust gas of Iranian marine diesel engines. Meanwhile, important factors were...
Optical Injection Phase-Locked Loop Application in Continuous-variable Quantum Key Distributions
, Ph.D. Dissertation Sharif University of Technology ; Bahrampour, Alireza (Supervisor)
Abstract
The primary objective of this thesis is to provide solutions addressing some security loopholes in continuous variables quantum key distribution protocols. The coherent detection method is utilized in this particular quantum key distribution scheme, which is a phase-sensitive detection. To measure in the quantum noise limit in the detection part, we need a local optical oscillator, which must possess a high intensity and a consistent phase correlation with the quantum signal. Therefore, reconstructing the emitter’s reference phase in the receiver’s detection system is considered as one of the most critical challenges in these protocols. In order to attain this goal, in the early versions of...
Using Information Beyond Text to Generate Language Embedding Vectors
, M.Sc. Thesis Sharif University of Technology ; Sameti, Hossein (Supervisor)
Abstract
In this thesis, we introduce a novel Artificial Intelligence (AI) system inspired by the philosophical and psychoanalytical concept of imagination as a ``Re-construction of Experiences". Our AI system is equipped with an imagination-inspired module that bridges the gap between textual inputs and other modalities, enriching the derived information based on previously learned experiences. A unique feature of our system is its ability to formulate independent perceptions of inputs. This leads to unique interpretations of a concept that may differ from human interpretations but are equally valid, a phenomenon we term as ``Interpretable Misunderstanding". We employ large-scale models,...
Design and Fabrication of Microfluidic System as Concentration Gradient Generator
, M.Sc. Thesis Sharif University of Technology ; Saadatmand, Maryam (Supervisor)
Abstract
According to today’s medicine progress, the need for improving the medical facilities have been increased. Within the human body, the biomolecules concentration gradient is regulating the cell functions. Biological processes such as immune response, wound healing, and cancer metastasis have been affected by the bimolecular concentration gradient. So understanding the cell behavior in the presence of a chemical gradient can improve the understanding from these biological processes, and also would help in medical researches. On the other hand, finding the appropriate dose of the drugs and in some cases finding the most effective drug is a clinical challenge that made a new field of research in...
Investigation of the Performance of Microbial Fuel Cell Based on Shewanella Bacteria with the Aim of Nanostructured Materials
, M.Sc. Thesis Sharif University of Technology ; Yaghmaei, Soheila (Supervisor) ; Sanaee, Zeinab (Co-Supervisor)
Abstract
The development of clean, renewable and alternative sources of fossil fuels has increased in recent years due to various factors such as environmental pollution, reduced fossil fuel resources and increased energy consumption. The application of microbial fuel cells is one of the clean energy production methods using renewable sources such as municipal sewage. The microbial fuel cell converts the chemical energy stored in organic materials into electrical energy and simultaneously purifies the sewage. Increasing current density and power density are the most important challenges for microbial fuel cells. In this study, the two biocatalysts of Shewanella Oneidensis MR1 and Escherichia coli...
In situ and simultaneous synthesis of a novel graphene-based catalyst for deep hydrodesulfurization of naphtha
, Article Catalysis Letters ; Volume 145, Issue 9 , September , 2015 , Pages 1660-1672 ; 1011372X (ISSN) ; Kazemeini, M ; Rashidi, A ; Bazmi, M ; Sharif University of Technology
Kluwer Academic Publishers
2015
Abstract
In this research, a novel graphene-supported catalyst was prepared through which, a simultaneous chemical exfoliation of graphite and MoS2 powder performed preparing a new composite species and evaluated for the hydrodesulfurization reaction of naphtha and no sulfidation pretreatment was performed upon the catalyst. Also, the influences of the operating parameters such as temperature, and liquid hourly space velocity on HDS conversion evaluated. (Chemical Equation Presented)
Graphene based catalysts for deep hydrodesulfurization of naphtha and diesel fuels: A physiochemical study
, Article Fuel ; Volume 165 , 2016 , Pages 468-476 ; 00162361 (ISSN) ; Kazemeini, M ; Rashidi, A ; Bazmi, M ; Sharif University of Technology
Elsevier Ltd
2016
Abstract
In this study, graphene materials have been synthesized with solid camphor (C10H16O) and methane gas as carbon precursors using atmospheric pressure chemical vapor deposition (CVD) technique at a temperature range of 900-1000 °C for a period of 45 min over copper nanoparticles. Influence of the carbon precursors upon the shape, number of layers and yield of the synthesized graphene samples has been investigated. In this venue, the compounds synthesized were functionalized with oxygen groups and impregnated by cobalt and molybdenum active phases. Moreover, the total metal loading and Co/Mo weight ratio of prepared compounds were adjusted to their industrial nominal values of 10% and 0.33,...
Artificial intelligence techniques for modeling and optimization of the HDS process over a new graphene based catalyst
, Article Phosphorus, Sulfur and Silicon and the Related Elements ; Volume 191, Issue 9 , 2016 , Pages 1256-1261 ; 10426507 (ISSN) ; Kazemeini, M ; Rashidi, A ; Tayyebi, S ; Sharif University of Technology
Taylor and Francis Ltd
2016
Abstract
A Co-Mo/graphene oxide (GO) catalyst has been synthesized for the first time for application in a defined hydrodesulfurization (HDS) process to produce sulfur free naphtha. An intelligent model based upon the neural network technique has then been developed to estimate the total sulfur output of this process. Process operating variables include temperature, pressure, LHSV and H2/feed volume ratio. The three-layer, feed-forward neural network developed consists of five neurons in a hidden layer, trained with Levenberg–Marquardt, back-propagation gradient algorithm. The predicted amount of residual total sulfur is in very good agreement with the corresponding experimental values revealing a...
Optimizing parameters affecting synthesis of a novel Co–Mo/GO catalyst in a Naphtha HDS reaction utilizing D-optimal experimental design method
, Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 78 , 2017 , Pages 566-575 ; 18761070 (ISSN) ; Kazemeini, M ; Rashidi, A ; Soltanali, S ; Sharif University of Technology
2017
Abstract
In this research effects of important synthesis parameters upon catalytic performance of a novel graphene based catalyst for an HDS reaction were investigated. The graphene oxide (GO) used as a support was initially prepared through chemical exfoliation of graphite via modified Hummers method. In this venue the impregnation method, promoter/main metallic spices ratio, total metal loading of the active phase and amount of chelating agent were systematically understudied. Thus, GO was impregnated with active metallic phases through the hydrothermal and modified incipient wetness impregnation techniques. In both procedures, 1:2, 1:3 and 1:4 weight ratios of Co/Mo with the percentages of the...
Comparative study on adsorptive desulfurization of thiophenic compounds over terephthalic acid-based and trimesic acid-based metal-organic frameworks
, Article Energy and Fuels ; Volume 37, Issue 9 , 2023 , Pages 6490-6502 ; 08870624 (ISSN) ; Khorashe, F ; Hajjar, Z ; Soltanali, S ; Sharif University of Technology
American Chemical Society
2023
Abstract
Aromatic sulfur compounds present in liquid fuels in the form of thiophenes are converted into sulfur oxides (SOx) during the combustion of fuels and cause major environmental problems such as acid rain, global warming, and air pollution. The adsorptive desulfurization of four aromatic sulfur compounds─thiophene, benzothiophene, dibenzothiophene, and 4,6-dimethyl dibenzothiophene─from n-octane was investigated in the current study over five typical metal-organic frameworks (MOFs), namely MIL-53(Cr, Al, Fe), Cu-BDC, and HKUST-1, which were successfully synthesized and characterized using XRD, FT-IR, SEM, and N2 adsorption-desorption. The results indicate that for ADS of thiophene and BT, the...
Unsupported advance length in tunnels constructed using New Austrian Tunnelling Method and ground surface settlement
, Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 37, Issue 14 , 2013 , Pages 2170-2185 ; 03639061 (ISSN) ; Ahmadi, M. M ; Hajjar, M ; Kashighandi, A ; Sharif University of Technology
2013
Abstract
Tunnels constructed using New Austrian Tunnelling Method (NATM) are always based on certain round (unsupported) advance lengths, after which, the temporary lining is placed. The settlement of the ground surface resulting from such construction is of high significance in design and practice. The existing data in this respect, however, is scarce. It is the aim of this paper to propose a semi-analytical procedure based on three-dimensional finite element analyses to predict the maximum surface settlement of the ground in NATM tunnels under different combinations of tunnel diameter, overburden depth, round length and soil and lining properties. The comparison of the results with three case...
Naphtha HDS over Co-Mo/Graphene catalyst synthesized through the spray pyrolysis technique
, Article Journal of Analytical and Applied Pyrolysis ; Volume 123 , 2017 , Pages 144-151 ; 01652370 (ISSN) ; Kazemeini, M ; Rashidi, A ; Soltanali, S ; Bahadoran, F ; Sharif University of Technology
Elsevier B.V
2017
Abstract
Co-Mo/Graphene composite synthesized for the first time through the spray pyrolysis method and applied as an HDS catalyst to produce a sulfur free Naphtha feed. The major advantage of the spray pyrolysis technique was its concurrent capability of the in-situ and simultaneous Co-Mo deposition upon the graphene. The produced material was characterized through the XRD, BET-BJH, FTIR and Raman spectroscopy as well as; the NH3-TPD, TPR, TEM and FESEM techniques. The prepared catalyst showed unique properties such as; high degree of total acidity of 5.1 (vs. the usual 0.2–2.0) mmole NH3/g-cat and a relatively high surface area of 705 vs. 189 m2/g of the commercial material. Furthermore, the...
Synthesis and Evaluation of Carbon based Catalyst for HDS Process of Refinery Products
, Ph.D. Dissertation Sharif University of Technology ; Kazemini, Mohammad (Supervisor) ; Rashidi, Alimorad (Supervisor) ; Bazmi, Mansour (Co-Advisor)
Abstract
One of the most important world issues is environmental constraints regarding the pollutants released by transportation fuels and refinery products, sulfur reduction being one of the most significant objectives. Deep hydrodesulfurization processes result in great sulfur reduction in refinery streams. However, such harsh process conditions increase undesired side reactions and facilitate coke formation as well as affecting the surfaces. More effective alternatives for hard process conditions are highly active and selective hydrodesulfurization catalysts, which enable the process to be performed at milder pressure and reaction conditions. Catalyst bases play a very important role in hydrogen...