Loading...
Search for: hamdollahzadeh--mohammad
0.112 seconds

    Target Detection and Tracking in Forward Scattering Radars

    , M.Sc. Thesis Sharif University of Technology Hamdollahzadeh, Mohammad (Author) ; Nayebi, Mohammad Mahdi (Supervisor)
    Abstract
    Forward scatter radar is a special kind of bistatic radar. It is designed to detect targets near the transmitter-receiver line which is called baseline. It has a number of promising features such as larger target radar cross-section (RCS) than that of traditional radars, applicability of shadow inverse SAR (SISAR) algorithms, high performance in automatic target recognition and identification, and robustness to stealth technology. On the other hand, it also has some inherent limitations, including the absence of range resolution (potentially leading to a high Doppler clutter level) and operation within narrow angles relative to the transmitter-receiver baseline. Target detection in forward... 

    Performance Improvement in Direct Position Determination of Radio Transmitters

    , Ph.D. Dissertation Sharif University of Technology Hamdollahzadeh, Mohammad (Author) ; Behnia, Fereidoon (Supervisor)
    Abstract
    This work is mostly about the analysis of direct position determination (DPD) approach as an emerging approach in source localization. Different aspects of this localization has been considered and some improvement techniques has been addressed. DPD is known as a replacement for the conventional 2-step localization approach in which the location of the target is estimated via the estimation of some interface parameters such as time of arrival, angle of arrival and etc. The main focus of this thesis is on the sensor placement problem in DPD in order to find an optimal configuration for the sensors to achieve the best accuracy in the estimation process. In this regard, the formulas of the... 

    Recursive sensor placement in two dimensional TDOA based localization

    , Article 24th Iranian Conference on Electrical Engineering, 10 May 2016 through 12 May 2016 ; 2016 , Pages 300-304 ; 9781467387897 (ISBN) Hamdollahzadeh, M ; Adelipour, S ; Behnia, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper presents a new approach to sensor placement strategy in emitter localization problem which is based on Time Difference of Arrival (TDOA) measurements. The advantage of this method is its flexibility and capability of positioning sensors in constrained or non-stationary situations in which the positions of the sensors are restricted to certain portions of the space and/or needed to be changed repeatedly. The validity of the proposed algorithm is assessed by three different simulation scenarios and the results verify its proper operation  

    Optimal sensor configuration for two dimensional source localization based on TDOA/FDOA measurements

    , Article Proceedings International Radar Symposium, 10 May 2016 through 12 May 2016 ; Volume 2016-June , 2016 ; 21555753 (ISSN) ; 9781509025183 (ISBN) Hamdollahzadeh, M ; Adelipour, S ; Behnia, F ; Sharif University of Technology
    IEEE Computer Society  2016
    Abstract
    The Cramer-Rao lower bound for source localization based on Time Difference of Arrival and Frequency Difference of Arrival is investigated in this paper. The result is used for theoretical analysis of optimality in sensor placement. An optimal sensor-target geometry including sensors locations and velocities is presented and its properties is studied  

    Sequential sensor placement in twodimensional passive source localisation using time difference of arrival measurements

    , Article IET Signal Processing ; Volume 12, Issue 3 , 2018 , Pages 310-319 ; 17519675 (ISSN) Hamdollahzadeh, M ; Adelipour, S ; Behnia, F ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    This study presents a new approach to sensor placement strategy in emitter localisation problems based on time difference of arrival measurements. The method addresses a flexible procedure which is capable of positioning the sensors in constrained environments or non-stationary situations where the positions of the sensors are restricted to certain parts of the space and/or need to be changed repeatedly. This method is sequential and has lower computation burden compared to other methods. The validity of the proposed algorithm is assessed by many different numerical scenarios and the results verify its proper operation. © The Institution of Engineering and Technology 2017  

    Optimal sensor placement for multi-source AOA localisation with distance-dependent noise model

    , Article IET Radar, Sonar and Navigation ; Volume 13, Issue 6 , 2019 , Pages 881-891 ; 17518784 (ISSN) Hamdollahzadeh, M ; Amiri, R ; Behnia, F ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    In this study, the optimal sensor placement problem for multi-source angle of arrival localisation is investigated. The authors adopt the A-optimality criterion, maximising the trace of Fisher information matrix, to determine the optimal sensor-target geometry under distance-dependent Gaussian noise model. A recursive representation of the Cramer-Rao lower bound is derived to recast the sensor placement problem into a sequential method, obtaining the optimal sensor geometries in a step by step manner. Note that the state-of-the-art methods are highly sensitive to the source location changes such that they should be relocated by any later changes in target geometries, which is practically... 

    Moving target localization in bistatic forward scatter radars: performance study and efficient estimators

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 56, Issue 2 , 2020 , Pages 1582-1594 Hamdollahzadeh, M ; Amiri, R ; Behnia, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This paper considers the localization of a moving target using a forward scatter radar consisting of a transmitter and an array antenna receiver. A direct positioning method based on maximum likelihood (ML) estimation is proposed and compared with the conventional two-step method in which the primary parameters, including Doppler shift and angle of arrival, should be determined in the first step. Moreover, closed-form expressions for Cramer-Rao lower bound of both methods are derived. The aforementioned methods are comprehensively compared in terms of positioning accuracy and computational complexity. Theoretical performance study, including determining the minimum required observation time... 

    Optimal sensor placement for multi-source AOA localisation with distance-dependent noise model

    , Article IET Radar, Sonar and Navigation ; Volume 13, Issue 6 , 2019 , Pages 881-891 ; 17518784 (ISSN) Hamdollahzadeh, M ; Amiri, R ; Behnia, F ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    In this study, the optimal sensor placement problem for multi-source angle of arrival localisation is investigated. The authors adopt the A-optimality criterion, maximising the trace of Fisher information matrix, to determine the optimal sensor-target geometry under distance-dependent Gaussian noise model. A recursive representation of the Cramer-Rao lower bound is derived to recast the sensor placement problem into a sequential method, obtaining the optimal sensor geometries in a step by step manner. Note that the state-of-the-art methods are highly sensitive to the source location changes such that they should be relocated by any later changes in target geometries, which is practically... 

    Target direct position determination in 2D CW forward scatter radar

    , Article Proceedings International Radar Symposium, 10 May 2016 through 12 May 2016 ; Volume 2016-June , 2016 ; 21555753 (ISSN) ; 9781509025183 (ISBN) Hamdollahzadeh, M ; Adelipour, S ; Behnia, F ; Nayebi, M. M ; Sharif University of Technology
    IEEE Computer Society  2016
    Abstract
    This paper proposes an algebraic solution for the position and velocity of a moving target in forward scatter radar based on a single step direct position determination method. Unlike the conventional two-step method, this direct technique does not require the joint estimation of the Doppler frequency and the angle of arrival, initialization step, convergence considerations and linearization approximations  

    2-D spectral estimation in CW forward scatter radars

    , Article Proceedings International Radar Symposium, 24 June 2015 through 26 June 2015 ; Volume 2015-August , 2015 , Pages 664-669 ; 21555753 (ISSN); 9783954048533 (ISBN); 9783954048533 (ISBN); 9783954048533 (ISBN) Hamdollahzadeh, M ; Bagheri, A. M ; Azarbar, A ; Nayebi, M. M ; Rohling H ; Rohling H ; Rohling H ; Sharif University of Technology
    IEEE Computer Society  2015
    Abstract
    In CW forward scatter radars, Space-Time processing by 2-D FFT is used to estimate Doppler frequency shift and angle of arrival concurrently. 2-D periodogram and 2-D Capon methods are two famous spectral estimation methods which can be substituted for 2-D FFT. Here we will provide analysis of performance for these methods beside their cons and pros  

    Construction of an Experimental Device for Foaming Agent and an Experimental Study of the Properties of Foaming Agent

    , M.Sc. Thesis Sharif University of Technology Mohammad Karami (Author) ; Bazargan, Mohammad (Supervisor)
    Abstract
    The primary purpose of acidizing operations in the oil and gas industry is to enhance hydrocarbon production. Acidizing has been a common and conventional method for years, especially when production engineers face issues like declining reservoir pressure leading to reduced production rates. Initially, the treatment solution is referred to as matrix acidizing. In acidizing operations, different additives are combined with the acid to control its behavior in the reservoir. These additives may include iron control agents, corrosion inhibitors, friction reducers, and more. Incompatibility among these additives, the acid, and reservoir fluids can lead to severe damage to the reservoir.... 

    Numerical Analysis of An Annular Gas Turbine Combustor

    , M.Sc. Thesis Sharif University of Technology Gandomi, Mohammad Hossein (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    The goal of this research is the simulation of the annular combustion chamber of the turbine engine utilized by liquid fuel. The achievement to this goal will lead to create numerical tools for parametric study, analysis and combustion chamber designing.For this reason simple geometry has been considered. This simplicity of geometry causes to facilitate in parametric study and decrease in saving time for modeling and meshing. This combustion chamber is a simplified model of engine CF6. In recent study, the k – ε realizable model has been used for turbulence modeling. For non-adiabatic condition, chemical reaction is dissolved by utilizing probability density function along with laminar... 

    A misbehavior‐tolerant multipath routing protocol for wireless Ad hoc networks [electronic resource]

    , Article International Journal of Research in Wireless Systems (IJRWS) ; Vol. 2, Issue 9, pp. , Sep. 2013 Sedghi, H. (Haniyeh) ; Pakravan, Mohammad Reza ; Aref, Mohammad Reza ; Sharif University of Technology
    Abstract
    Secure routing is a major key to service maintenance in ad hoc networks. Ad hoc nature exposes the network to several types of node misbehavior or attacks. As a result of the resource limitations in such networks nodes may have a tendency to behave selfishly. Selfish behavior can have drastic impacts on network performance. We have proposed a Misbehavior-Tolerant Multipath Routing protocol (MTMR) which detects and punishes all types of misbehavior such as selfish behavior, wormhole, sinkhole and grey-hole attacks. The protocol utilizes a proactive approach to enforce cooperation. In addition, it uses a novel data redirection method to mitigate the impact of node misbehavior on network... 

    Theoretical and Experimental Study to Conversion of AUC to UO2 by Microwave Heating

    , Ph.D. Dissertation Sharif University of Technology Labbaf, Mohammad Hossein (Author) ; Otukesh, Mohammad (Supervisor) ; Ghannadi Maragheh, Mohammad (Co-Advisor) ; Ghasemi, Mohammad Reza (Co-Advisor)

    SAR Imaging Using the TomoSAR Technique to Resolve Multiple Scatterers

    , M.Sc. Thesis Sharif University of Technology Omati, Mohammad Mahdi (Author) ; Bastani, Mohammad Hassan (Supervisor) ; Karbasi, Mohammad (Co-Supervisor)
    Abstract
    During the last few years, the study of urban environment structures is considered as a research field of interest in remote sensing. In satellite observations of the earth's surface, continuous imaging in terms of time and space has caused the remote sensing technique to be proposed as a useful and efficient tool for the analysis of urban areas. Obtaining quantitative spatial information from the urban environment in fields such as determining the height of buildings plays an essential role in urban planning, monitoring damage to buildings, establishing communication bases and digital cities. During the last two decades, the use of Tomosar approach in order to reconstruct the structures of... 

    Estimating Possible Effects of Subsidies in Competition and Development of Fixed Broadband Internet

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Mohammad Ali (Author) ; Vesal, Mohammad (Supervisor) ; Rahmati, Mohammad Hossein (Supervisor)
    Abstract
    In this work, the dynamic competition between firms providing internet services is studied. The framework is Markov equilibrium whereby structural parameters are obtained using two-step estimations, allowing for analyzing the situation in case of subsidies for service upgrade. The results show that such subsidy has little effect on the number of firms while increasing the number of fast firms  

    Estimating Price Elasticity of Natural Gas Demand in Iran's Residential Sector: A Regression Discontinuity Approach

    , M.Sc. Thesis Sharif University of Technology Makhsousi, Mohammad Hossein (Author) ; Rahmati, Mohammad Hossein (Supervisor) ; Vesal, Mohammad (Supervisor)
    Abstract
    Estimating the price elasticity of gas demand involves complexities depending on the gas market structure and pricing mechanisms in different countries. Distinguishing between supply and demand shocks and block pricing are among the main challenges that can cause endogeneity in elasticity estimates. Iran's domestic gas network, one of the largest and most extensive household gas markets, is divided into five climatic zones based on weather conditions. The pricing steps for these five climates during the five cold months are such that a customer in a warmer climate pays higher prices. Conversely, the pricing steps for the seven warm months are the same for all climates. This policy creates a... 

    Estimate the Effect of Religiosity on Voter Turnout

    , M.Sc. Thesis Sharif University of Technology Jarrahi, Mohammad Mahdi (Author) ; Rahmati, Mohammad Hossein (Supervisor) ; Vesal, Mohammad (Supervisor)
    Abstract
    The correlation between religious adherence and voter turnout is widely studied. However, whether the relation is causal is an open question. We use Household Expenditures and Income Survey (HEIS) data in Iran, which encompasses nine distinct religious expenditures. These expenditures have low correlation with each other and represent different aspects of religious adherence. We use Imamzadeh (some historical holy shrines) as Instruments to estimate the causal effect of religious expenditures on voter turnout. The results reveal that religious expenditures influence both presidential and parliamentary voter turnout, with a notably stronger impact on presidential elections  

    Joint Optimization of Computation Offloading and Resource Allocation in Mobile Edge Computing Networks

    , M.Sc. Thesis Sharif University of Technology Shokouhi, Mohammad Hossein (Author) ; Pakravan, Mohammad Reza (Supervisor) ; Hadi, Mohammad (Co-Supervisor)
    Abstract
    Mobile edge computing (MEC) is a promising technology that aims to resolve cloud computing’s issues by deploying computation resources at the edge of mobile network and in the proximity of users. The advantages of MEC include reduced latency, energy consumption, and load on access and mobile core networks, to name but a few. Despite all the aforementioned advantages, the mobility of mobile network users causes the traditional MEC architecture to suffer from several issues, such as decreased efficiency and frequent service interruption. One of the methods to manage users’ mobility is virtual machine (VM) migration, where the VM containing the user’s task is migrated to somewhere closer to... 

    Non-Scratch, Antibacterial And Self-cleaning SiO2/TiO2 Nano Composite Coating on Surgical Tools By Sol-Gel

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Mohammad Hossein (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    In this study TiO2/SiO2 thin films were prepared by sol-gel method from Tetra isopropylortho Titanate(TIPT) as the principle of TiO2 material with Tera ethoxysilane(TEOS) as the principle of SiO2 material to achieve high scratch-resistant , antibacterial and self-cleaning surface area under the effect of various percentage of SiO2 . Film deposition was carried out using a dip-coating technique and heat-treatment was used at 700ºC to achieve crystalline of films with excellent adherence the of substrate.
    The surface morphology of the films has been observed by Scanning Electron Microscope (SEM) and the tribological properties of the surface were investigated by Atomic Force Microscope...