Loading...
Search for: hanafizadeh--p
0.208 seconds

    Thermoeconomic approach for optimal design of gas turbine heat recovery steam generator

    , Article Proceedings of the 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2013 ; July , 2013 Hanafizadeh, P ; Parhizgar, T ; Ghorbanian, K ; Sharif University of Technology
    China International Conference Center for Science and Technology  2013
    Abstract
    In the present study a comprehensive thermoeconomic modelling of a heat recovery steam generator (HRSG) for a typical 4MW class gas turbine is performed. Usually, the thermoeconomic analyses involve a thermodynamic model of the HRSG and an economic model dedicated to assess the cost. In this study, different configurations of single and dual pressure level HRSGs are optimized and afterward compared to find the economical design. For these configurations thermodynamic model calculates the performance and the energy balance of systems at the optimal operating conditions which are derived from optimization model, and economic model estimates total cost per unit of produced energy. Finally,... 

    Visual technique for detection of gas-liquid two-phase flow regime in the airlift pump

    , Article Journal of Petroleum Science and Engineering ; Volume 75, Issue 3-4 , January , 2011 , Pages 327-335 ; 09204105 (ISSN) Hanafizadeh, P ; Ghanbarzadeh, S ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Simplicity of manufacturing and high reliability of airlift pumps have promoted these pumps to be used in different industries, such as petrochemical and oil industries, especially in oil recovery from dead wells. One of the main parameters affecting the performance of these pumps is two-phase flow regime in the main pipe of the pump. In this research, experimental data are utilized to investigate the influence of the flow regimes on the performance of an airlift pump. The data are obtained for air-water two-phase flow in a vertical pipe with a diameter of d = 50. mm and an aspect ratio of L/d = 120. In this study, the gas liquid upward two-phase flow regime in the upriser pipe is... 

    Innovative semi-analytical methodology to predict automobile body temperature distribution in the curing ovens

    , Article Heat Transfer Engineering ; Volume 33, Issue 2 , Jun , 2012 , Pages 109-117 ; 01457632 (ISSN) Hanafizadeh, P ; Sajadi, B ; Saidi, M. H ; Sharif University of Technology
    2012
    Abstract
    In automobile painting industries, new automobile body products frequently should be tested in order to determine the actual thermal behavior of a paint curing process before starting mass production. During the hardening processes of dipped paint coating, applied in the electrophoretic enameling process, or top paint coating, applied in the final coating process, the automobile body must be warmed up according to the specific paint manufacturer curve. Consequently, prediction of car body temperature during the curing process may be vital in the design and performance analysis of the paint ovens. Numerical simulation of these processes may reduce expensive and time-consuming experimental... 

    Effect of step geometry on the performance of the airlift pump

    , Article International Journal of Fluid Mechanics Research ; Volume 38, Issue 5 , 2011 , Pages 387-408 ; 10642277 (ISSN) Hanafizadeh, P ; Karimi, A ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Airlift pumps are devices which are widely used in industrial applications. Parameters such as diameter of the pipe, tapering angle of the upriser pipe, submergence ratio, the gas flow rate, bubble diameter, and inlet gas pressure affect the performance of this type of pumps. In this research, the performances of airlift pumps with a vertical upriser length of 914 mm and initial diameters of 6 and 8 mm and various heights for steps, range 0:2 to 0:9 m, in submergence ratio of 0:6 are investigated numerically. The results show the improvement in the performance of step airlift pump (SALP) in comparison with ordinary type (OALP). Considering the effect of height of steps and secondary pipe... 

    Exergy analysis of Airlift Systems: Experimental approach

    , Article International Journal of Exergy ; Volume 8, Issue 4 , 2011 , Pages 407-424 ; 17428297 (ISSN) Hanafizadeh, P ; Ghanbarzadeh, S ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Airlift Systems (ALS) are widely used in various industrial applications. As the main part of the flow through ALS's upriser pipe, is formed by gas-liquid flow, the analysis of such systems will be accompanied by problems of two-phase flow modelling. Several effective variables are involved in ALS; thereupon comprehensive method is needed to consider these parameters. Exergy analysis can be considered as a simple solution for the realisation of the preferred domain of ALS's operation. Here, this method has been proposed to examine the performance of ALS. Based on thermodynamic principles, an analytical model has been implemented in each phase and the respective experimental data have been... 

    Experimental investigation of characteristic curve for gas-lift pump

    , Article Journal of Petroleum Science and Engineering ; Volume 62, Issue 1 , 2014 , Pages 156-170 ; ISSN: 09204105 Hanafizadeh, P ; Raffiee, A. H ; Saidi, M. H ; Sharif University of Technology
    2014
    Abstract
    Using gas-liquid lifting pumps is a quite different technology for pumping two or three phase flows rather than other types of pumping systems. Therefore, finding performance characteristic chart for this type of pumping system seems to be necessary. In this type of pumping system, the liquid phase is pushed upward by the compressed air which has been injected in the bottom of upriser pipe of the pump. Therefore, compressed air acts as the driving force in gas lifting pumps instead of moving parts in ordinary pumps. It can be concluded that the definition of characteristic curve used for ordinary pump is not very appropriate for this type of pumping system. In this study, it has been... 

    Effect of bubble size and angle of tapering upriser pipe on the performance of airlift pumps

    , Article Particulate Science and Technology ; Volume 28, Issue 4 , Aug , 2010 , Pages 332-347 ; 02726351 (ISSN) Hanafizadeh, P ; Saidi, M. H ; Karimi, A ; Zamiri, A ; Sharif University of Technology
    2010
    Abstract
    Airlift pumps are devices with the ability to lift liquid phase by injecting the gas phase. Parameters that affect the performance of these pumps are divided into two groups. The first group contains design parameters such as diameter of the pipe, tapering angle of the upriser pipe, and the submergence ratio, which is the ratio of immersed length to the total length of the upriser. The second group includes operating parameters such as the gas flow rate, bubble diameter, bubble distribution, and inlet gas pressure. In this research, the performance of an airlift pump is investigated numerically for different submergence ratios and different diameter of the upriser pipe. For this purpose, an... 

    Numerical simulation of two-phase flow in airlift pumps using the Physical Influence Scheme

    , Article Progress in Computational Fluid Dynamics ; Volume 10, Issue 3 , 2010 , Pages 186-194 ; 14684349 (ISSN) Hanafizadeh, P ; Saidi, M. H ; Darbandi, M ; Kebriaee, A ; Sharif University of Technology
    2010
    Abstract
    A new approach has been presented to solve gas-liquid flow numerically in vertical pipes of air-lift pumps. To improve modelling, a new strategy has been employed with the capability of coupling the continuity and momentum equations and enforcing the role of pressure directly in the continuity equation. This is achieved via applying a novel scheme called the Physical Influence Scheme (PIS). The current finite volume solution is compared with other available numerical solutions. Indeed, they are in fair agreement. However, the present predictions are far superior to those obtained from an existing simple method, which is widely used in airlift pump modelling  

    Numerical simulation of two-phase flow in airlift pumps using the Physical Influence Scheme

    , Article Progress in Computational Fluid Dynamics ; Volume 10, Issue 3 , 2010 , Pages 186-194 ; 14684349 (ISSN) Hanafizadeh, P ; Saidi, M. H ; Darbandi, M ; Kebriaee, A ; Sharif University of Technology
    2010
    Abstract
    A new approach has been presented to solve gas-liquid flow numerically in vertical pipes of air-lift pumps. To improve modelling, a new strategy has been employed with the capability of coupling the continuity and momentum equations and enforcing the role of pressure directly in the continuity equation. This is achieved via applying a novel scheme called the Physical Influence Scheme (PIS). The current finite volume solution is compared with other available numerical solutions. Indeed, they are in fair agreement. However, the present predictions are far superior to those obtained from an existing simple method, which is widely used in airlift pump modelling  

    Effect of bubble size and angle of tapered upriser pipe on the effectiveness of a two phase lifting pump

    , Article 2009 ASME Fluids Engineering Division Summer Conference, 2nd August 2009 through 6 August 2009 ; Volume 1, Issue PART B , 2009 , Pages 807-814 ; 9780791843727 (ISBN) Hanafizadeh, P ; Saidi, M. H ; Zamiri, A ; Karimi, A ; Sharif University of Technology
    2009
    Abstract
    Two phase lifting pumps are devices with the ability of lifting liquid phase by injecting the gas phase. Parameters which affect the performance of these pumps are divided into two groups. The first group contains design parameters such as diameter of the pipe, tapering angle of the upriser pipe and the submergence ratio which is the ratio of immersed length to the total length of the upriser. The second group includes operating parameters, such as the gas flow rate, bubble diameter, bubble distribution and inlet gas pressure. In this research, the performance of two phase lifting pump is investigated numerically for different submergence ratios and different diameter of the upriser pipe.... 

    Experimental investigation of air-water, two-phase flow regimes in vertical mini pipe

    , Article Scientia Iranica ; Volume 18, Issue 4 B , August , 2011 , Pages 923-929 ; 10263098 (ISSN) Hanafizadeh, P ; Saidi, M. H ; Nouri Gheimasi, A ; Ghanbarzadeh, S ; Sharif University of Technology
    2011
    Abstract
    In this study, the flow patterns of air-water, two-phase flows have been investigated experimentally in a vertical mini pipe. The flow regimes were observed by a high speed video recorder in pipes with diameters of 2,3 and 4 mm and length 27, 31 and 25 cm, respectively. The comprehensive visualization of air-water, two-phase flow in a vertical mini pipe has been performed to realize the physics of such a two-phase flow. Different flow patterns of air-water flow were observed simultaneously in the mini pipe at different values of air and water flow rates. Consequently, the flow pattern map was proposed for flow in the mini-pipe, in terms of superficial velocities of liquid and gas phases. The... 

    Semi analytical prediction of automobile body temperature distribution in the top coat paint oven

    , Article Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009, 19 July 2009 through 23 July 2009 ; Volume 3 , 2009 , Pages 655-660 ; 9780791843581 (ISBN) Hanafizadeh, P ; Sajadi, B ; Saidi, M. H ; Khalkhali, H ; Taherraftar, M ; Sharif University of Technology
    2009
    Abstract
    Automotive industry frequently needs to test new products, according to different production parameters, in order to determine the actual thermal behavior of bodies before mass production is implemented. Numerical simulation of these processes can reduce the very expensive and time consuming experimental procedures. For the drying and hardening process of the top paint applied in the coating process, the body temperature must be raised according to the paint manufacturer regulations. Consequently, prediction of temperature distribution of the car body during various zones of ovens is very vital in the design and performance analysis of the paint dryers. In this research, a novel... 

    Heat recovery of exhaust gas in automotive paint ovens

    , Article 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010, Lausanne, 14 June 2010 through 17 June 2010 ; Volume 5 , 2010 , Pages 381- ; 9781456303204 (ISBN) Hanafizadeh, P ; Khaghani, A ; Shams, H ; Saidi, M.H ; Ecole Polytechnique Federale de Lausanne; Schweizerische Eidgenossenschaft ; Sharif University of Technology
    Aabo Akademi University  2010
    Abstract
    The rising cost of energy and the global warming in recent years have highlighted the need of more advanced systems with higher efficiency and less gas emissions. Consequently, plenty of researches have done on waste heat recovery and renewable sources of energy recently. The target of the present research is feasibility study of heat recovery in automobiles' paint ovens and designing an efficient system to use the lost energy. Research has been carried out on the theory, evaluating the amount of lost and available energy through Thermodynamics and heat transfer principle and choosing applicable design and construction of heat exchanger, especially for their use in ovens for energy recovery,... 

    Secrecy capacity scaling in large cooperative wireless networks

    , Article IEEE Transactions on Information Theory ; Volume 63, Issue 3 , 2017 , Pages 1923-1939 ; 00189448 (ISSN) Mirmohseni, M ; Papadimitratos, P. P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    We investigate large wireless networks subject to security constraints. In contrast to point-to-point, interferencelimited communications considered in prior works, we propose active cooperative relaying-based schemes. We consider a network with nl legitimate nodes, ne eavesdroppers, and path loss exponent α ≥ 2. As long as n2e (log(ne))γ = o(nl ), for some positive γ , we show that one can obtain unbounded secure aggregate rate. This means zero-cost secure communication, given fixed total power constraint for the entire network. We achieve this result through: 1) the source using Wyner randomized encoder and a serial (multi-stage) block Markov scheme, to cooperate with the relays and 2) the... 

    Fast estimation of connectivity in fractured reservoirs using percolation theory

    , Article SPE Journal ; Volume 12, Issue 2 , 2007 , Pages 167-178 ; 1086055X (ISSN) Masihi, M ; King, P. R ; Nuratza, P ; Sharif University of Technology
    Society of Petroleum Engineers (SPE)  2007
    Abstract
    Investigating the impact of geological uncertainty (i.e., spatial distribution of fractures) on reservoir performance may aid management decisions. The conventional approach to address this is to build a number of possible reservoir models, upscale them, and then run flow simulations. The problem with this approach is that it is computationally very expensive. In this study, we use another approach based on the permeability contrasts that control the flow, called percolation approach. This assumes that the permeability disorder of a rock can be simplified to either permeable or impermeable. The advantage is that by using some universal laws from percolation theory, the effect of the complex... 

    A new decoding scheme for errorless codes for overloaded CDMA with active user detection

    , Article 2011 18th International Conference on Telecommunications, ICT 2011, Ayia Napa, 8 May 2011 through 11 May 2011 ; 2011 , Pages 201-205 ; 9781457700248 (ISBN) Mousavi, A ; Pad, P ; Delgosha, P ; Marvasti, F ; Sharif University of Technology
    2011
    Abstract
    Recently, a new class of binary codes for overloaded CDMA systems are proposed that not only has the ability of errorless communication but also suitable for detecting active users. These codes are called COWDA. In [1], a Maximum Likelihood (ML) decoder is proposed for this class of codes. Although the proposed scheme for coding/decoding shows impressive performance, the decoder can be significantly improved. In this paper, by assuming practical conditions for the traffic in the system, we suggest and prove an algorithm that increases the performance of the decoder several orders of magnitude (the Bit-Error-Rate (BER) is divided by a factor of about 400 in some E b/N0's). The algorithm... 

    Estimation of the Effective Permeability of Heterogeneous Porous Media by Using Percolation Concepts

    , Article Transport in Porous Media ; Volume 114, Issue 1 , 2016 , Pages 169-199 ; 01693913 (ISSN) Masihi, M ; Gago, P. A ; King, P. R ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    In this paper we present new methods to estimate the effective permeability (keff) of heterogeneous porous media with a wide distribution of permeabilities and various underlying structures, using percolation concepts. We first set a threshold permeability (kth) on the permeability density function and use standard algorithms from percolation theory to check whether the high permeable grid blocks (i.e., those with permeability higher than kth) with occupied fraction of “p” first forms a cluster connecting two opposite sides of the system in the direction of the flow (high permeability flow pathway). Then we estimate the effective permeability of the heterogeneous porous media in different... 

    Percolation-based effective permeability estimation in real heterogeneous porous media

    , Article 15th European Conference on the Mathematics of Oil Recovery, 29 August 2016 through 1 September 2016 ; 2016 ; 9462821933 (ISBN); 9789462821934 (ISBN) Masihi, M ; Gago, P ; King, P ; DCSE; Schlumberger; Shell ; Sharif University of Technology
    European Association of Geoscientists and Engineers  2016
    Abstract
    It has long been understood that flow behavior in heterogeneous porous media is largely controlled by the continuity of permeability contrasts. With this in mind, we are looking in new methods for a fast estimation of the effective permeability which concentrates on the properties of the percolating cluster. From percolation concepts we use a threshold permeability value (Kth) by which the gridblocks with the highest permeability values connect two opposite side of the system in the direction of the flow. Those methods can be applied to heterogeneous media of a range of permeabilities distribution and various underlying structures. We use power law relations and weighted power averages that... 

    Optimization of sputtering parameters for the deposition of low resistivity indium tin oxide thin films

    , Article Acta Metallurgica Sinica (English Letters) ; Vol. 27, issue. 2 , Apr , 2014 , p. 324-330 Yasrebi, N ; Bagheri, B ; Yazdanfar, P ; Rashidian, B ; Sasanpour, P ; Sharif University of Technology
    2014
    Abstract
    Indium tin oxide (ITO) thin films have been deposited using RF sputtering technique at different pressures, RF powers, and substrate temperatures. Variations in surface morphology, optical properties, and film resistances were measured and analyzed. It is shown that a very low value of sheet resistance (1.96 ω/sq.) can be achieved with suitable arrangement of the deposition experiments. First, at constant RF power, deposition at different pressure values is done, and the condition for achieving minimum sheet resistance (26.43 ω/sq.) is found. In the next step, different values of RF powers are tried, while keeping the pressure fixed on the previously found minimum point (1-2 Pa). Finally,... 

    Comparative assessment of gasification based coal power plants with various CO2 capture technologies producing electricity and hydrogen

    , Article Energy and Fuels ; Volume 28, Issue 2 , 20 February , 2014 , Pages 1028-1040 ; ISSN: 08870624 Mukherjee, S ; Kumar, P ; Hosseini, A ; Yang, A ; Fennell, P ; Sharif University of Technology
    2014
    Abstract
    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool "Aspen Plus". The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air...