Loading...
Search for: hashemi--m--r
0.181 seconds

    Chaotic dynamics of active topological defects

    , Article Soft Materials ; Volume 19, Issue 3 , 2021 , Pages 316-322 ; 1539445X (ISSN) Hashemi, A ; Ejtehadi, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Topological defects are interesting phenomena which can be observed in ordered phases such as oriented active fluids or nematic liquid crystals. Topological defects are determined by the overall structure of the director field in an active fluid in nematic phase and by exerting force to the units of the active particles they can interact or cause motion in the environment. Studying them as particles with dynamical equations, instead of studying the director field of the nematic environment, would provide us the power to study the characteristics of their motion. The equations of motion for multi-defect systems have been previously studied and in this work we focus on the chaotic properties... 

    Dimensional characterization of anesthesia dynamic in reconstructed embedding space

    , Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 6483-6486 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) Gifani, P ; Rabiee, H. R ; Hashemi, M. R ; Ghanbari, M ; Sharif University of Technology
    2007
    Abstract
    The depth of anesthesia quantification has been one of the most research interests in the field of EEG signal processing and nonlinear dynamical analysis has emerged as a novel method for the study of complex systems in the past few decades. In this investigation we use the concept of nonlinear time series analysis techniques to reconstruct the attractor of anesthesia from EEG signal which have been obtained from different hypnotic states during surgery to give a characterization of the dimensional complexity of EEG by Correlation Dimension estimation. The dimension of the anesthesia strange attractor can be thought of as a measure of the degrees of freedom or the 'complexity' of the... 

    Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 91, Issue 1 , January , 2015 ; 15393755 (ISSN) Hashemi, S. M ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the... 

    A general treatment of piezoelectric double-inhomogeneities and their associated interaction problems

    , Article Acta Mechanica ; Volume 220, Issue 1-4 , 2011 , Pages 167-182 ; 00015970 (ISSN) Kargarnovin, M. H ; Shodja, H. M ; Hashemi, R ; Sharif University of Technology
    2011
    Abstract
    The present paper addresses an analytical method to determine the electroelastic fields over a double-phase piezoelectric reinforcement interacting with an ellipsoidal single-inhomogeneity. The approach is based on the extension of the electro-mechanical equivalent inclusion method (EMEIM) to the piezoelectric double-inhomogeneity system. Accordingly, the double-inhomogeneity is replaced by an electroelastic double-inclusion problem with proper polynomial eigenstrains-electric fields. The long- and short-range interaction effects are intrinsically incorporated by the homogenizing eigenfields. The equivalent double-inclusion is subsequently decomposed to the single-inclusion problems by means... 

    A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows

    , Article International Journal of Non-Linear Mechanics ; Volume 47, Issue 6 , 2012 , Pages 626-638 ; 00207462 (ISSN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2012
    Abstract
    A weakly compressible smoothed particle hydrodynamics (WCSPH) method is used along with a new no-slip boundary condition to simulate movement of rigid bodies in incompressible Newtonian fluid flows. It is shown that the new boundary treatment method helps to efficiently calculate the hydrodynamic interaction forces acting on moving bodies. To compensate the effect of truncated compact support near solid boundaries, the method needs specific consistent renormalized schemes for the first and second-order spatial derivatives. In order to resolve the problem of spurious pressure oscillations in the WCSPH method, a modification to the continuity equation is used which improves the stability of... 

    SPH simulation of interacting solid bodies suspended in a shear flow of an Oldroyd-B fluid

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 166, Issue 21-22 , November , 2011 , Pages 1239-1252 ; 03770257 (ISSN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2011
    Abstract
    An explicit weakly compressible SPH method is introduced to study movement of suspended solid bodies in Oldroyd-B fluid flows. The proposed formulation does not need further stabilizing treatments and can be efficiently employed to study particulate flows with Deborah to Reynolds number ratios up to around 10. A modified boundary treatment technique is also presented which helps to deal with the movement of solid particles in the flow. The technique is computationally efficient and gives an improved evaluation of fluid-solid interaction forces.A number of test cases are solved to show performance of the proposed method in simulating particulate viscoelastic flows containing circular and... 

    Simulating fluid-solid interaction problems using an immersed boundary-SPH method

    , Article Particle-Based Methods II - Fundamentals and Applications, 26 October 2011 through 28 October 2011 ; Octobe , 2011 , Pages 954-965 ; 9788489925670 (ISBN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2011
    Abstract
    In this work, the Immersed Boundary Method (IBM) is adapted and implemented in the context of Smoothed Particle Hydrodynamics (SPH) method to study moving solid bodies in an incompressible fluid flow. The proposed computational algorithm is verified by solving a number of benchmark particulate flow problems. The results are also compared with those obtained using the same SPH scheme along with a direct solid boundary imposition technique  

    Evaluation of a pressure splitting formulation for Weakly Compressible SPH: Fluid flow around periodic array of cylinders

    , Article Computers and Mathematics with Applications ; 2016 ; 08981221 (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a pressure splitting formulation is proposed for Weakly Compressible SPH (WC-SPH) method and its capability in the suppression of the spurious oscillations is studied by conducting a stability analysis. The proposed formulation is implemented within the framework of a consistent SPH method. The predictions from the theoretical analysis are verified by the results of numerical test-cases. This method is applied to the incompressible fluid flow around periodic array of circular cylinders. The accuracy and the convergence of the results are investigated for benchmark problems. The results are also compared with those of the conventional WC-SPH method. In a similar test-case, the... 

    A SPH solver for simulating paramagnetic solid fluid interaction in the presence of an external magnetic field

    , Article Applied Mathematical Modelling ; Volume 40, Issue 7-8 , 2016 , Pages 4341-4369 ; 0307904X (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    The Smoothed Particle Hydrodynamics (SPH) method is extended to solve magnetostatic problems involving magnetically interacting solid bodies. In order to deal with the jump in the magnetic permeability at a fluid-solid interface, a consistent SPH scheme is utilized and a modified formulation is proposed to calculate the magnetic force density along the interface. The results of the magnetostatic solver are verified against those of the finite element method. The governing fluid flow equations are discretized using the same SPH scheme, developing an efficient method for simulating the motion of paramagnetic solid bodies in a fluid flow. The proposed algorithm is applied to a benchmark problem... 

    Direct numerical simulation of magnetic particles suspended in a Newtonian fluid exhibiting finite inertia under SAOS

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 256 , 2018 , Pages 8-22 ; 03770257 (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A direct numerical simulation approach is utilized to understand the oscillatory shear rheology of a confined suspension of magnetic chains formed by paramagnetic circular cylinders under the influence of an external magnetic field. The common assumption of gap-spanning chains made in the literature is relaxed in this work, so that a fully suspended (periodic) array of magnetic chains is formed. In this sense, the effective rheological parameters are only influenced through a layer of fluid adjacent to the walls. All tests are conducted at very low but finite particle Reynolds numbers, and typical inertial effects are discussed. The main aim of the present study is to investigate the... 

    Non-linear stress response of non-gap-spanning magnetic chains suspended in a newtonian fluid under oscillatory shear test: a direct numerical simulation

    , Article Physics of Fluids ; Volume 29, Issue 10 , 2017 ; 10706631 (ISSN) Hashemi, M. R ; Taghizadeh Manzari, M ; Fatehi, R ; Sharif University of Technology
    2017
    Abstract
    Adirect numerical simulation approach is used to investigate the effective non-linear viscoelastic stress response of non-gap-spanning magnetic chains suspended in a Newtonian fluid. The suspension is confined in a channel and the suspended clusters are formed under the influence of a constant external magnetic field. Large amplitude oscillatory shear (LAOS) tests are conducted to study the non-linear rheology of the system. The effect of inertia on the intensity of non-linearities is discussed for both magnetic and non-magnetic cases. By conducting magnetic sweep tests, the intensity and quality of the non-linear stress response are studied as a function of the strength of the external... 

    A green and efficient deoximation using H2O2 catalyzed by montmorillonite-K10 supported CoCl2

    , Article Chinese Chemical Letters ; Volume 18, Issue 12 , December , 2007 , Pages 1451-1454 ; 10018417 (ISSN) Ezabadi, A ; Najafi, G. R ; Hashemi, M. M ; Sharif University of Technology
    2007
    Abstract
    Oximes were oxidized to the corresponding carbonyl compounds in good to high yields by environmentally friendly and green oxidant, H2O2 catalyzed by montmorillonite K-10 supported cobalt(II) chloride. © 2007 Ali Ezabadi  

    Microwave-assisted synthesis of bithiazole derivatives under solvent-free conditions

    , Article Russian Journal of Organic Chemistry ; Volume 41, Issue 4 , 2005 , Pages 623-624 ; 10704280 (ISSN) Hashemi, M. M ; Asadollahi, H ; Mostaghim, R ; Sharif University of Technology
    2005

    Nonlinear analysis of anesthesia dynamics by fractal scaling exponent

    , Article 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'06, New York, NY, 30 August 2006 through 3 September 2006 ; 2006 , Pages 6225-6228 ; 05891019 (ISSN); 1424400325 (ISBN); 9781424400324 (ISBN) Gifani, P ; Rabiee, H. R ; Hashemi, M. R ; Taslimi, P ; Ghanbari, M ; Sharif University of Technology
    2006
    Abstract
    The depth of anesthesia estimation has been one of the most research interests in the field of EEG signal processing in recent decades. In this paper we present a new methodology to quantify the depth of anesthesia by quantifying the dynamic fluctuation of the EEG signal. Extraction of useful information about the nonlinear dynamic of the brain during anesthesia has been proposed with the optimum Fractal Scaling Exponent. This optimum solution is based on the best box sizes in the Detrended Fluctuation Analysis (DFA) algorithm which have meaningful changes at different depth of anesthesia. The Fractal Scaling Exponent (FSE) Index as a new criterion has been proposed. The experimental results... 

    Axisymmetric thermo-electro-elastic analysis of a piezoelectric half space

    , Article Mathematics and Mechanics of Solids ; Volume 17, Issue 5 , September , 2012 , Pages 500-515 ; 10812865 (ISSN) Kargarnovin, M. H ; Hashemi, R ; Hashemi, M ; Sadeghi, H ; Sharif University of Technology
    2012
    Abstract
    In this study, an analytical solution is presented for thermo-electro- elastic analysis of piezoelectric semi-infinite bodies. For this purpose, governing equations are derived for a transversely isotropic piezoelectric material under an axisymmetric thermo-electro-mechanical loading condition. A general closed-form analytical solution is presented for the complementary and particular parts of the components of the displacement vector and also for the electric potential function. Then, boundary conditions are imposed and in that case an explicit solution is obtained for piezoelectric semi-infinite bodies. Results show that when a piezoelectric half space is subjected to constant/ramp surface... 

    One-pot synthesis of 1H-indazolo[2,1-b]-phthalazinetrione catalazed by magnetic room temperature dicationic ionic liquid under solvent-free conditions

    , Article Heterocycles ; Volume 87, Issue 3 , 2013 , Pages 559-570 ; 03855414 (ISSN) Godajdar, B. M ; Kiasat, A. R ; Hashemi, M. M ; Sharif University of Technology
    2013
    Abstract
    The efficient one-pot condensation of aldehyde, dimedone, and phthalhydrazide has been achieved in the presence of a catalytic amount of Fe(III)-based dicationic ionic liquid, [C4(mim)2] (FeCl4)2, as a novel environmentally benign magnetic catalyst under solvent-free conditions. The catalyst was easily separated after completion of the reaction and was recycled four times without affecting the catalytic property  

    Synthesis, characterization and application of magnetic room temperature dicationic ionic liquid as an efficient catalyst for the preparation of 1,2-azidoalcohols

    , Article Journal of Molecular Liquids ; Volume 183 , 2013 , Pages 14-19 ; 01677322 (ISSN) Godajdar, B. M ; Kiasat, A. R ; Hashemi, M. M ; Sharif University of Technology
    2013
    Abstract
    An environmentally benign, aqueous synthesis of 1,2-azidoalcohols via regioselective ring opening of their epoxides using magnetic imidazolium based dicationic room temperature ionic liquid, [pbmim](FeCl4)2, as an efficient magnetic phase transfer catalyst in water has been described. The present approach offers the advantages of clean reaction, simple methodology, short reaction time, high yield, easy purification and reusable catalyst  

    Fractal nematic colloids

    , Article Nature Communications ; Volume 8 , 2017 ; 20411723 (ISSN) Hashemi, S.M ; Jagodič, U ; Mozaffari, M. R ; Ejtehadi, M. R ; Muševič, I ; Ravnik, M ; Sharif University of Technology
    Nature Publishing Group  2017
    Abstract
    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and... 

    Silicon tetrachloride catalyzed aza-michael addition of amines to conjugated alkenes under solvent-free conditions

    , Article Synlett ; Issue 3 , 2010 , Pages 379-382 ; 09365214 (ISSN) Azizi, N ; Baghi, R ; Ghafuri, H ; Bolourtchian, M ; Hashemi, M ; Sharif University of Technology
    2010
    Abstract
    The efficient and very simple conjugate addition of aromatic and aliphatic amines to α,β-unsaturated carbonyl compounds under solvent-free conditions in the presence of catalytic amount of silicon tetrachloride is reported. The reaction of aryl and alkyl amines with different Michael acceptors gave the corresponding Michael adducts with simple catalyst and good to excellent yields  

    Wavelet packet decomposition of a new filter -based on underlying neural activity- for ERP classification

    , Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 1876-1879 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) Raiesdana, S ; Shamsollahi, M. B ; Hashemi, M. R ; Rezazadeh, I ; Sharif University of Technology
    2007
    Abstract
    This paper introduces a wavelet packet algorithm based on a new wavelet like filter created by a neural mass model in place of wavelet. The hypothesis is that the performance of an ERP based BCI system can be improved by choosing an optimal wavelet derived from underlying mechanism of ERPs. The wavelet packet transform has been chosen for its generalization in comparison to wavelet. We compared the performance of proposed algorithm with existing standard wavelets as Db4, Bior4.4 and Coif3 in wavelet packet platform. The results showed a lowest cross validation error for the new filter in classification of two different kinds of ERP datasets via a SVM classifier. © 2007 IEEE