Loading...
Search for: hassannayebi--erfan
0.198 seconds

    A Process Mining Approach to Analyze Customer Journeys to Improve Customer Experience

    , M.Sc. Thesis Sharif University of Technology Akhavan, Fatemeh (Author) ; Hassannayebi, Erfan (Supervisor)
    Abstract
    With the growth of the number of online service providers and the need to innovate in these services, in this study, the processes and the journeys taken by visitors of a website that provides employment services and employment insurance has been analyzed. In this research, process mining techniques and predictive process monitoring were implemented. With the use of a supervised and unsupervised learning algorithm, it attempted to identify the customer journeys' output and the existing patterns that lead to the complaint. In the first step, the website event log is extracted. Afterward, by using frequency-based encoding methods, the journeys traveled by users were clustered based on the... 

    Predictive Business Process Monitoring Using Machine Learning Algorithms

    , M.Sc. Thesis Sharif University of Technology Feiz, Roya (Author) ; Hassannayebi, Erfan (Supervisor)
    Abstract
    In order to survive in today's business world, which is changing at a very fast pace, organizations can detect deviations even before they occur, quickly and with a high percentage of confidence, by analyzing their processes, in order to prevent disruptions in the processes. by monitoring the information systems that automatically execute business processes, it is possible to ensure the correct implementation of the existing processes. For this purpose, various techniques for monitoring business processes have been presented so that managers have a comprehensive and real view of how implement processes and be able to identify possible deviations in the future and try to fix them because the... 

    Data-Driven Prediction for Monitoring Business Process Pperformances Based on Classification Algorithms

    , M.Sc. Thesis Sharif University of Technology Taheriyan, Zahra (Author) ; Hassannayebi, Erfan (Supervisor)
    Abstract
    In recent years, several studies have been conducted in the field of data mining techniques in the field of process mining with the aim of improving the performance of organizations. Predictive process monitoring is a data-driven approach that helps business managers to improve the status and conditions of their organization. In this approach, the event log, which includes a set of completed examples of a process, is received as input, and machine learning methods are used to predict the outcome and results of the organization's processes before the process is completed. This prediction can include the prediction of the final result, the next event, the time remaining until the completion of... 

    Predictive Process Monitoring Based on Optimized Deep Learning Methods

    , M.Sc. Thesis Sharif University of Technology Alibakhshi, Alireza (Author) ; Hassannayebi, Erfan (Supervisor)
    Abstract
    Business processes are an essential part of every business as they provide insights on how to optimize and make them more efficient. Predictive Business Process Monitoring has garnered significant attention in recent years due to its capability to forecast process outcomes and predict the next activity within an ongoing process. In the last few years, there have been works that focused on deep learning and its applications in predicting the next activity. Some research used Long Term Short Memory, while others used Convolutional Neural Networks. However, long term short term memory models have the constraint of relatively slow training, while Convolutional Neural Networks are fast but may... 

    A System Dynamic Simulation Approach to Investigate Economic And Environment Factors Based on VUCA framework: A Case Study in Petrochemical Industry

    , M.Sc. Thesis Sharif University of Technology Monfaredi Jafarbagi, Aoun (Author) ; Hassannayebi, Erfan (Supervisor)
    Abstract
    To maintain adaptability, businesses should anticipate changes in their environment. The commonly employed forecasting method within corporate circles is the bottom-up approach, which relies on historical data for projecting future trends. However, research suggests that this approach often falls short of accurately reflecting real-world events. This has led to the adoption of dynamic systems modeling, a technique grounded in the assumption of stable conditions. This method effectively replicates the system's current state, thereby assisting in predicting future behaviors over a longer timeframe. The dynamic systems modeling approach was employed in this study, underscoring the imperative... 

    Business Processes Deviation Analysis Using Process Mining Algorithms

    , M.Sc. Thesis Sharif University of Technology Attarzadeh, Milad (Author) ; Akbari Jokar, Mohammad Reza (Supervisor) ; Hassannayebi, Erfan (Co-Supervisor)
    Abstract
    Deviations in business processes consistently impose significant financial and temporal costs on business owners and can lead to decreased customer satisfaction with organizations. Therefore, timely identification of deviations is a crucial and significant issue for business process managers. While extensive research has been conducted on the detection of antecedent deviations, predicting deviations before they occur—which could facilitate preemptive actions to prevent these deviations—has received less attention. In this context, the aim of this study is to predict two types of process deviations—temporal deviations and Rework deviations—using machine learning and deep learning algorithms,... 

    A Train Sequencing and Stop Scheduling Model inDouble Track Railway Lines by hHybrid GRASP-VNS Meta-Heuristic

    , M.Sc. Thesis Sharif University of Technology Hassannayebi, Erfan (Author) ; Kianfar, Fereydoon (Supervisor)
    Abstract
    The train scheduling problem is one of the most important scheduling problems in the transportation systems. The goal of train scheduling problem is generating a feasible timetable which consists of train departure times and determining the best station to stop. Optimizing the railway capacity is one of the most important goals in train scheduling phase. The sequence of dispatching trains and stopping schedule are the main factors that can affect railway capacity on double track lines. In this thesis, a double-track train sequencing problem is studied in order to maximize the railway capacity, subject to a set of operational requirements. This research proposes a flexible flow shop... 

    Operations Optimization in Supply Chain Systems using Simulation and Reinforcement Learning

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Farzaneh (Author) ; Hassan Nayebi, Erfan (Supervisor)
    Abstract
    The inventory costs constitute a significant portion of the supply chain costs. Therefore, choosing an optimal inventory policy for orders is of great importance. The aim of this research is to find the optimal inventory policy for a distribution center in a three-tier supply chain consisting of a manufacturer, a distribution center, and a retailer. This research simulates a supply chain in agent-based framework and optimizes it using reinforcement learning. The optimization KPI in this research is the mean daily cost of the supply chain. Finally, the result obtained from reinforcement learning is compared with the optimized result of AnyLogic and the mean daily cost in the model optimized... 

    Estimation of highway capacity under environmental constraints vs. conventional traffic flow criteria: A case study of Tehran

    , Article Journal of Traffic and Transportation Engineering (English Edition) ; 2021 ; 20957564 (ISSN) Mirzahossein, H ; Safari, F ; Hassannayebi, E ; Sharif University of Technology
    Chang'an University  2021
    Abstract
    In this paper, the concept of environmental capacity is developed to identify a convenient maximum traffic volume which will not reduce the life quality of residents. The presented method investigates the idea of traffic capacity under environmental constraints by calculating the maximum number of vehicles allowed on roads based on acceptable levels of air and noise pollutants. In this study, the permissible noise pollution level and permissible levels of CO and NOx pollution are considered for determining environmental capacity. Results show the significant difference between environmental capacity and functional traffic capacity, introduced by the highway capacity manual (HCM) as a... 

    Customer Journey Analytics using Process Mining Based on the Markov Model

    , M.Sc. Thesis Sharif University of Technology Torabi Ardekani, Saba (Author) ; Hassan Nayebi, Erfan (Supervisor)
    Abstract
    The analysis of customer journeys has gained significant attention due to the critical role of customer behavior data in enhancing business decision-making and formulating strategies for customer acquisition and retention. By segmenting customers based on their journey patterns, businesses can offer personalized recommendations, thereby improving customer engagement and loyalty. Additionally, predicting the next steps in a customer’s journey based on historical data allows for timely and appropriate interventions at various touchpoints. By understanding where customers are in their journey, businesses can provide targeted recommendations that increase the likelihood of converting potential... 

    Green inventory management in a multi-product, multi-vendor post-disaster construction supply chain

    , Article Environment, Development and Sustainability ; 2023 ; 1387585X (ISSN) Mohammadnazari, Z ; Alipour Vaezi, M ; Hassannayebi, E ; Sharif University of Technology
    Springer Science and Business Media B.V  2023
    Abstract
    In the outcome of natural disasters, different factors, i.e., uncertain lead time and material quality, incur an additional cost, downgrading the supply chains’ efficiency. The optimal inventory decisions are challenging due to the complexity arising from the multi-product, multi-vendor consideration, uncertainty of supplies, and conflicting objectives in sustainable construction supply chains. To fill the existing research gaps, this research presents an operation research modeling framework to minimize the amount of carbon emitted by suppliers’ vehicles as well as ordering and holding costs in a post-disaster construction supply chain under the epistemic uncertainty of quality and cost... 

    Discovering and Improving the Processes of an Iranian Psychiatric Hospital Using Process Mining

    , M.Sc. Thesis Sharif University of Technology Roshan, Mohammad Amin (Author) ; Hassan Nayebi, Erfan (Supervisor)
    Abstract
    Providing quality hospital services depends on the efficient and correct implementation of processes. Therapeutic care processes are a set of activities that are carried out with the aim of diagnosing, treating and preventing any disease in order to improve and promote the patient's health. The purpose of this study is to use process mining techniques to discover and improve healthcare processes. The case study of this research is a psychiatric hospital in Shiraz. The approach implemented in this research consists of three main stages including data pre-processing, model discovery phase, and analysis phase. Three algorithms including Heuristic Miner, Inductive Miner, and ILP Miner were used... 

    Optimization of Foreign Exchange (Forex) Trading Using Machine Learning Methods

    , M.Sc. Thesis Sharif University of Technology Fakoor, Mohammad Mahdi (Author) ; Hassan Nayebi, Erfan (Supervisor)
    Abstract
    The foreign exchange market, commonly known as Forex, is one of the largest and most significant financial markets in the world, attracting the attention of numerous investors on a daily basis. One of the main challenges faced by traders in this market is the accurate prediction of currency prices. Although Forex market forecasting is highly popular, the inherent complexity of this market continues to make accurate prediction a persistent concern. In recent decades, remarkable advancements have occurred in the field of machine learning, particularly in deep learning. These developments have also influenced the Forex market, resulting in the publication of numerous research articles aimed at... 

    Bi-objective optimization approaches to many-to-many hub location routing with distance balancing and hard time window

    , Article Neural Computing and Applications ; Volume 32, Issue 17 , 2020 , Pages 13267-13288 Basirati, M ; Akbari Jokar, M. R ; Hassannayebi, E ; Sharif University of Technology
    Springer  2020
    Abstract
    This study addresses a many-to-many hub location-routing problem where the best-found locations of hubs and the best-found tours for each hub are determined with simultaneous pickup and delivery within the hard time window. To find practical solutions, the hubs and transportation fleet have constrained capacity, in which every node can be serviced by multiple allocations with the hard time window and limited tour length. First, a bi-objective optimization model is proposed to balance travel costs among different routes and to minimize the total sum of fixed costs of locating hubs, the costs of handling, traveling, assigning, and transportation costs. The problem is then solved using an... 

    The investigation of natural super-cavitation flow behind three-dimensional cavitators: Full cavitation model

    , Article Applied Mathematical Modelling ; Volume 45 , 2016 , Pages 165-178 ; 0307904X (ISSN) Kadivar, E ; Kadivar, Erfan ; Javadi, K ; Javadpour, S. M ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    In this study, natural super-cavitating flow around three different conical cavitators with wedge angles of 30°, 45° and 60° is investigated. We apply the k−ϵ turbulence model and the volume of fluid (VOF) technique to numerically study the three-dimensional cavitating flow around the cavitators. The turbulence approach is coupled with a mass transfer model which is implemented into the finite-volume package. Simulations are performed for different cavitation numbers. Finally, the effects of some important parameters such as the cavitation index, inlet velocity, Froude number and wedge angle of cavitators on the geometrical characteristics of the super-cavities are discussed. Our numerical... 

    Analysis and Improvement of Agile Software Development Process Using Process Mining and Machine Learning Algorithms

    , M.Sc. Thesis Sharif University of Technology Fardipour Asl, Mohsen (Author) ; Hassan Nayebi, Erfan (Supervisor)
    Abstract
    In the competitive world of software development, IT product development teams face numerous challenges and issues within business processes. In recent years, the combination of process mining and machine learning algorithms to optimize software development processes has gained attention. However, there is still a lack of a comprehensive model for identifying and conducting root-cause analysis of problems and providing solutions based on them in agile software development systems. The aim of this research is to find a solution for identifying and addressing issues in the software development process by modifying the change request workflow and examining various aspects of incidents. To... 

    Improve Performance of Process Mining Algorithms in Low-Level Event Log with Machine Learning Methods

    , M.Sc. Thesis Sharif University of Technology Choopannezhad, Mahsa (Author) ; Hassan Nayebi, Erfan (Supervisor)
    Abstract
    This thesis abstract addresses the use of process mining techniques when event data is stored at varying levels of granularity. While most techniques assume that events have the same level of granularity, real data is often stored differently. Pre-processing techniques allow for appropriate summarization of the data, which simplifies the output while retaining important process details. The goal is to ensure an interpretable output for stakeholders and different business teams without losing critical process points. However, adding new data as a feature to the dataset can be expensive, and at times, infeasible. Therefore, existing data is the only solution. To overcome this challenge, this... 

    Optimization and modeling of Zn2SnO4 sensitivity as gas sensor for detection benzene in the air by using the response surface methodology

    , Article Journal of Saudi Chemical Society ; Volume 25, Issue 12 , 2021 ; 13196103 (ISSN) Hosseinzadeh asl, H ; Tohidi, G ; Movahedi, F ; Hassannayebi, E ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this paper, the performance of the benzene gas detection sensor in the air is optimized by an experimental design method. So in this work, Nanostructured thin films of ZnO and Zn2SnO4 were prepared in wurtzite form via a facile atmospheric pressure chemical vapor deposition (CVD) method, using metallic zinc and tin precursors. Characterization of the gas sensor was performed by using Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and surface area analysis (using BET method). The results show that Zn2SnO4 nanowire network exhibited good sensitivity at 299 °C temperature to low concentrations (100 ppb) of Benzene which can be potentially used as a resistive gas sensor.... 

    Cost overrun risk assessment and prediction in construction projects: a bayesian network classifier approach

    , Article Buildings ; Volume 12, Issue 10 , 2022 ; 20755309 (ISSN) Ashtari, M. A ; Ansari, R ; Hassannayebi, E ; Jeong, J ; Sharif University of Technology
    MDPI  2022
    Abstract
    Cost overrun risks are declared to be dynamic and interdependent. Ignoring the relationship between cost overrun risks during the risk assessment process is one of the primary reasons construction projects go over budget. Conversely, recent studies have failed to account for potential interrelationships between risk factors in their machine learning (ML) models. Additionally, the presented ML models are not interpretable. Thus, this study contributes to the entire ML process using a Bayesian network (BN) classifier model by considering the possible interactions between predictors, which are cost overrun risks, to predict cost overrun and assess cost overrun risks. Furthermore, this study... 

    Robust Markov Decision Processes and Applications in Mathematical Finance

    , M.Sc. Thesis Sharif University of Technology Soori, Mohammad (Author) ; Fotouhi Firouzabadi, Morteza (Supervisor) ; Salavati, Erfan (Supervisor)
    Abstract
    Dynamic portfolio optimization is one of the prominent problems in financial mathematics, for which numerous theories have been proposed to solve it. One of the solutions to this problem is the use of reinforcement learning. The main challenge with this method is that most reinforcement learning algorithms require a large amount of data, and therefore, the necessary data is often obtained not from the real world, but through simulations by estimating the parameters of a model. However, the approximation error of the parameters can propagate through the final solution, leading to inaccurate results. One approach to addressing this issue is the use of robust Markov processes and robust...