Loading...
Search for: heydarian-dolatabadi--ehsan
0.168 seconds

    Measuring Concentration of Heavy Metals in Waste Water Using Biosensor

    , M.Sc. Thesis Sharif University of Technology Heydarian Dolatabadi, Ehsan (Author) ; Alemzadeh, Iran (Supervisor) ; Kalantarian, Asadollah (Supervisor)
    Abstract
    Wastewater, especially with heavy metal contamination, is a global environmental concern. Numerous techniques have been tested for online controlling and monitoring the concentration of heavy metal ions; yet, there are many challenges in performing these techniques. Biosensor is cheap, easily available, simple, fast, selective, sensitive, and repeatable so it is an excellent alternative for the detection and quantification of hazardous particles in the wastewater. In this study, a Nano biosensor with high detection of copper ions has been fabricated. PEDOT:PSS as a highly conductive polymer is coupled with gold nanoparticles to modify the surface of graphite electrode and results in higher... 

    A sampling theorem for convex shapes with algebraic boundaries

    , Article 2017 12th International Conference on Sampling Theory and Applications, SampTA 2017, 3 July 2017 through 7 July 2017 ; 2017 , Pages 499-503 ; 9781538615652 (ISBN) Mohaghegh Dolatabadi, H ; Amini, A ; Sharif University of Technology
    2017
    Abstract
    In this paper we present a sampling result about continuous-domain black and white images that form a convex shape. In particular, we will study shapes whose boundaries belong to the zero-level sets (roots) of bivariate polynomials. In [1] it was shown that generalized 2D moments of the image can lead to annihilation equations for the coefficients of the bivariate polynomial that determine the boundary of the shape. More precisely, when the bivariate polynomial is of degree n (which has n(n+3)/2 non-trivial coefficients), the results in [1] indicate that for invertibility of the linear annihilation equations, 2D moments of up to degree 3n-1 (overall equation moments) are required. In this... 

    Design of an Adaptive Controller for Uncertain Fractional-order Systems Subject to Actuator Failure

    , M.Sc. Thesis Sharif University of Technology Dolatabadi, Shayesteh (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    The objective of this research is to design an adaptive controller for a class of fractional-order nonlinear systems in the strict-feedback form with unmodeled dynamics. Actuator saturation and actuator fault are also considered. All of the system states are assumed to be measurable, and all the sensors can be faulty. Fractional-order systems are chosen because, in the modeling of physical systems, the fractional-order calculus is often preferable to the classical integer-order calculus. The controller is designed by using the backstepping design technique. The fuzzy logic systems are used to eliminate the problem of "explosion of complexity" in the conventional backstepping method and also... 

    TCAS Logic Improvement for Airliners Formation Flights

    , M.Sc. Thesis Sharif University of Technology Dolatabadi, Shirin (Author) ; Malaek, Mohammad Bagher (Supervisor)
    Abstract
    This study explores the trajectory optimization of two aircrafts’ formation flight seeking minimization of fuel consumption and flight duration while considering activation of the Traffic Collision Avoidance System (TCAS) during the flights. In order to model the effects of this system, a set of codes has been developed in the Matlab software environment, which utilizes an estimation model of induced drag for each aircraft by their relative positions. Also, position rotation is allowed, and the number and location of rotations are controllable by the user. The TCAS determines the allowable distances between aircrafts during flights based on relative velocities and relative heading angles.... 

    Thermionic Emission Properties of Oxide Based Nano-Structures

    , M.Sc. Thesis Sharif University of Technology Heydarian, Hesam (Author) ; Rashidian, Bijan (Supervisor)
    Abstract
    For years, in thermionic emission, a great deal of scientists’s effort has been devoted to the search for low work function materials with high melting temperature. In this way, high brightness and long life are the central targets of emission material investigations. In addition, high current density and low power consumption are the guiding principles for some applications.
    In first part of this thesis, basic electron emission theories, fabrication methods of thermionic emission, effect of different parameters on the electron emission properties of thermionic emitters and applications of them are investigated. After setting up fabrication methods of S type cathode, in the second part... 

    Analysis and Characterization of Near Field Behavior of Plasmonic Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Heydarian, Hesam (Author) ; Rashidian, Bizhan (Supervisor)
    Abstract
    Despite ongoing progress in the field of nanophotonics, characterizing and identifying optical interactions in the deep subwavelength dimensions have remained challenging. The inability of conventional optical microscopy in nanoscale imaging, due to diffraction limit, was the main stimulus for research on new characterizing methods with the capability of non-destructive high-resolution imaging in which the sample preparation is not required. To achieve this goal, scanning probe microscopes are introduced to extract valuable high spatial harmonics from near field measurements on the sample. In this thesis, by focusing on the probe-sample interaction, the near field behavior of the plasmonic... 

    Modeling jumps in organization of petroleum exporting countries basket price using generalized autoregressive heteroscedasticity and conditional jump

    , Article Investment Management and Financial Innovations ; Volume 13, Issue 4 , 2016 , Pages 196-202 ; 18104967 (ISSN) Bahramgiri, M ; Gharaati, S ; Dolatabadi, I ; Sharif University of Technology
    LLC CPC Business Perspectives  2016
    Abstract
    This paper uses autoregressive jump intensity (ARJI) model to show that the oil price has both GARCH and conditional jump component. In fact, the distribution of oil prices is not normal, and oil price returns have conditional heteroskedasticity. Here the authors compare constant jump intensity with the dynamic jump intensity and evidences demonstrate that oil price returns have dynamic jump intensity. Therefore, there is strong evidence of time varying jump intensity Generalized Autoregressive Heteroscedasticity (GARCH) behavior in the oil price returns. The findings have several implications: first, it shows that oil price is highly sensitive to news, and it does settle around a trend in... 

    Design of Toeplitz Measurement Matrices with Applications to Sparse Channel Estimation in Single-Carrier Communication

    , M.Sc. Thesis Sharif University of Technology Mohaghegh Dolatabadi, Hadi (Author) ; Amini, Arash (Supervisor)
    Abstract
    Channel estimation is one of the fundamental challenges in every communication system and different algorithms have been proposed to deal with it. Obviously, type of a communication channel is an important factor in choosing the appropriate method for channel estimation. Sparse channels are one kind of them that occur in many real-world applications such as wireless communication systems. In addition, emergence of a new means in signal processing to deal with sparse signals, known as Compressed Sensing(CS), paved the way for their extensive usage in many applications including sparse channel estimation.On the other hand, one of the most fundamental problems in sparse signal recovery using CS... 

    Fully Homomorphic Encryption Implementation

    , M.Sc. Thesis Sharif University of Technology Heydarian, Mohammad Javad (Author) ; Shabany, Mahdi (Supervisor)
    Abstract
    After being introduced in 2009, the first fully homomorphic encryption (FHE) scheme has created significant excitement in academia and industry. Despite rapid advances in the last 6 years, FHE schemes are still not ready for deployment due to an efficiency bottleneck. Here we introduce a hardware/software codesign, in fact a hardware accelerator optimized for a class of reconfigurable logic to bring homomorphic encryption schemes one step closer to deployment in real-life applications. The accelerator we present is connected via a fast PCIe interface to a CPU platform to provide homomorphic evaluation services to any application that needs to support blinde computations. Specifically we... 

    Tunable wide-band graphene plasmonic nano-color-sorter: Application in scanning near-field optical microscopy

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 2 , 2019 , Pages 435-442 ; 07403224 (ISSN) Heydarian, H ; Yazdanfar, P ; Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    Tunability of the Fermi level of graphene is exploited to implement a plasmonic nano-color-sorter for scanning near-field optical microscope (SNOM) applications capable of handling large tip sample couplings. Nano-color-sorting has been used in SNOM through creating multiple spatially separated hot spots for different incident wavelengths. We show that in the presence of high-refractive-index samples an unwanted redshift in the spectral response of the dual-color probe occurs. This limitation can be compensated for using graphene and adjusting its chemical potential to obtain a blueshift in probe spectral response. The Method of Moments analysis technique is employed to engineer the probe... 

    Near field differential interference contrast microscopy

    , Article Scientific Reports ; Volume 10, Issue 1 , 15 June , 2020 Heydarian, H ; Yazdanfar, P ; Zarif, A ; Rashidian, B ; Sharif University of Technology
    Nature Research  2020
    Abstract
    Near field scanning optical microscopy exploiting differential interference contrast enhancement is demonstrated. Beam splitting in the near field region is implemented using a dual color probe based on plasmonic color sorter idea. This provides the ability to illuminate two neighboring points on the sample simultaneously. It is shown that by modulating the two wavelengths employed in exciting such a probe, phase difference information can be retrieved through measuring the near field photoinduced force at the difference of the two modulation frequencies. This difference in frequency is engineered to correspond to the first resonant frequency of the cantilever, resulting in improved SNR, and... 

    Dual-color plasmonic probes for improvement of scanning near-field optical microscopy

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 3 , 2018 , Pages 627-635 ; 07403224 (ISSN) Heydarian, H ; Shahmansouri, A ; Yazdanfar, P ; Rashidian, B ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    Design and modeling of a class of scanning near-field optical microscope (SNOM) probe for improving performance are reported. The basic idea is to generate more than one hot spot with well-known spatial distribution. This not only enables one to calibrate out many sorts of errors in conventional SNOM but also results in the increase in the speed of imaging. We utilize plasmonic nanocolor sorter structures to design aperture probes that create two spatially distinct hot spots. The method of moment analysis technique is employed to tune the probe for operation at standard Ar-ion laser wavelengths (457.9 and 514.5 nm). © 2018 Optical Society of America  

    Optical isolation enabled by two time-modulated point perturbations in a ring resonator

    , Article Optics Express ; Volume 28, Issue 11 , 2020 , Pages 16805-16821 Zarif, A ; Mehrany, K ; Memarian, M ; Heydarian, H ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    In this paper we achieve non-reciprocity in a silicon optical ring resonator, by introducing two small time-modulated perturbations into the ring. Isolators are designed using this time-perturbed ring, side-coupled to waveguides. The underlying operation of the time-modulated ring and isolator is analyzed using Temporal Coupled Mode Theory (TCMT). The TCMT is used to find the angular distance, phase difference and thickness of the two time-modulated points on the ring resonator and also to find and justify the optimum values for the modulation frequency and amplitude, which yields maximum isolation in the isolator arrangements. Insight into the major players that determine isolation are also... 

    A Real-Time and Energy-Efficient Decision Making Framework for Computation Offloading in Iot

    , M.Sc. Thesis Sharif University of Technology Heydarian, Mohammad Reza (Author) ; Fazli, Mohammad Amin (Supervisor)
    Abstract
    Based on fog computing paradigm, new applications have become feasible through the use of hardware capabilities of smart phones. Many of these applications require a vast amount of computing and real-time execution should be guaranteed. Based on fog computing, in order to solve these problems in is necessary to offload heavy computing to servers with adequate hardware capabilities. On the other side, the offloading process causes time overhead and endangers the real-timeliness of the application. Also, because of the limited battery capacity of the handheld devices, energy consumption is very important and should be minimized.The usual proposed solution for this problem is to refactor the... 

    A study of the required sustainability-driven institutional and behavioural mechanisms to tackle the anticipated implications of agricultural water price shocks: a system dynamics approach

    , Article Scientific Reports ; Volume 13, Issue 1 , 2023 ; 20452322 (ISSN) Momeni, M ; Razavi, V ; Zahedi, S ; Momeni, F ; Behzadian, K ; Dolatabadi, N ; Sharif University of Technology
    Nature Research  2023
    Abstract
    Economic policies for managing agricultural water use are often complicated by the challenge of using water prices as an efficient economic tool when other non-economic concerns are involved in the decision-making process. This study aims to analyse the impact of water pricing policies on preserving agricultural water resources in Iran. This study applies a system dynamics approach to simulate the system performance and behaviour of stakeholders and the economic implications. Our finding shows that water pricing policies will likely fail due to low water price elasticity and if there are lack of institutional and physical infrastructure, alternative professions, manufacturing technology,... 

    On validity assurance of dynamic reconfiguration for component-based programs

    , Article Electronic Notes in Theoretical Computer Science ; Volume 159, Issue 1 , 2006 , Pages 227-239 ; 15710661 (ISSN) Niamanesh, M ; Fekrazad Nobakht, N ; Jalili, R ; Heydarian Dehkordi, F ; Sharif University of Technology
    2006
    Abstract
    Growing the need for long-life and high-available programs, dynamic reconfiguration is going to be an important research issue. Dynamic reconfiguration enables the software systems to change at runtime to decrease their down-time in case of any updating, upgrading or in any changes. Any invalid reconfiguration at runtime may lead programs into invalid states. In this paper, we investigate on validity of dynamic reconfiguration for component-based programs and propose validity conditions for it. We show that the problem of validity assurance in general is undecidable and there is no general-purpose algorithm to verify dynamic reconfiguration validity. To have a computable algorithm for... 

    Simulation of enhanced characteristic x rays from a 40-MeV electron beam laser accelerated in plasma

    , Article Physical Review Special Topics - Accelerators and Beams ; Volume 15, Issue 2 , 2012 ; 10984402 (ISSN) Nikzad, L ; Sadighi Bonabi, R ; Riazi, Z ; Mohammadi, M ; Heydarian, F ; Sharif University of Technology
    2012
    Abstract
    Simulation of x-ray generation from bombardment of various solid targets by quasimonoenergetic electrons is considered. The electron bunches are accelerated in a plasma produced by interaction of 500 mJ, 30 femtosecond laser pulses with a helium gas jet. These relativistic electrons propagate in the ion channel generated in the wake of the laser pulse. A beam of MeV electrons can interact with targets to generate x-ray radiation with keV energy. The MCNP-4C code based on Monte Carlo simulation is employed to compare the production of bremsstrahlung and characteristic x rays between 10 and 100 keV by using two quasi-Maxwellian and quasimonoenergetic energy distributions of electrons. For a... 

    Genco's Bidding Strategy in Day-Ahead Energy Market Considering Demand Response

    , M.Sc. Thesis Sharif University of Technology Kazemi, Mostafa (Author) ; Ehsan, Mehdi (Supervisor)
    Abstract
    Since 1980s the electricity market has been gradually evolving from a monopoly market into a liberalized one for encouraging competition and improving efficiency. This brings the opportunity for generation companies (Gencos) to make more profits while embracing more risks of not being dispatched. Therefore, it has become a core interest for the Gencos to develop optimal bidding strategies to maximize the profits and minimize the risks while participating in such a competitive market. Error of determining day-ahead electricity price is one of the sources of the risk. Energy price has a high impact on bidding strategy optimization process. So it should be determined with low error which is not... 

    Multi Objective Distributed Generation Planning in a Flexible Environment

    , Ph.D. Dissertation Sharif University of Technology Soroudi, Alireza (Author) ; Ehsan, Mehdi (Supervisor)
    Abstract
    The process of deregulation that has involved electricity many markets has introduced several new interesting research topics in power system area. This thesis addresses one of the most fascinating issues among them: the study of distributed generation both renewable and conventional integration in distribution networks. From the distribution network operator (DNO)'s point of view, it is of interest to develop a comprehensive methodology which considers various distributed generation technologies as an option for supplying the demand in distribution networks. In this thesis, the planning problem has been multi-objectively modeled. This will help the planner in decision making while knowing... 

    , M.Sc. Thesis Sharif University of Technology Mahmoodzadeh, Zahra (Author) ; Ehsan, Mehdi (Supervisor)
    Abstract
    Losses are unavoidable in any parts of power systems, from generation to receiving nodes and occur in transmission and distribution networks. However, the main loss component is produced in distribution networks. Energy losses in distribution networks are about 70% of technological transport energy losses.
    Energy losses in distribution networks are an important indicator for the planning and operation of the system. A fast, reliable and accurate energy loss calculation method is required for optimal operation of the distribution networks.
    Energy loss depends on network's operating conditions. Loads values and loads factors are time variables; therefore, methods based on probability...