Loading...
Search for:
hosseini--sepideh
0.116 seconds
Total 1177 records
Seizure Detection in Generalized and Focal Seizure from EEG Signals
, M.Sc. Thesis Sharif University of Technology ; Hajipour, Sepideh (Supervisor)
Abstract
Epilepsy is one of the diseases that affects the quality of life of epileptic patients. Epileptic patients lose control during epileptic seizures and are more likely to face problems. Designing and creating a seizure detection system can reduce casualties from epileptic attacks. In this study, we present an automatic method that reduces the artifact from the raw signals, and then classifies the seizure and non-seizure epochs. At all stages, it is assumed that no information is available about the patient and this detection is made only based on the information of other patients. The data from this study were recorded in Temple Hospital and the recording conditions were not controlled, so...
Emotion Recognition from EEG Signals using Tensor based Algorithms
, M.Sc. Thesis Sharif University of Technology ; Hajipour, Sepideh (Supervisor)
Abstract
The brain electrical signal (EEG) has been widely used in clinical and academic research, due to its ease of recording, non-invasiveness and precision. One of the applications can be emotion recognition from the brain's electrical signal. Generally, two types of parameters (Valence and Arousal) are used to determine the type of emotion, which, in turn, indicate "positive or negative" and "level of extroversion or excitement" for a specific emotion. The significance of emotion is determined by the effects of this phenomenon on daily tasks, especially in cases where the person is confronted with activities that require careful attention and concentration.In the emotion recognition problem,...
Studying Time Perception in Musician and Non-musician Using Auditory Stimuli
, M.Sc. Thesis Sharif University of Technology ; Hajipour, Sepideh (Supervisor)
Abstract
Time perception is a concept that describes how a person interprets the duration of an event. Depending on the circumstances, people may feel that time passes quickly or slowly. So far, the understanding, comparison, and estimation of the time interval have been described using a simple model, a pacemaker accumulator, that is powerful in explaining behavioral and biological data. Also, the role of the frequency band, Contingent Negative Variation (CNV), and Event-Related Potential (ERP) components have been investigated in the passage of time and the perception of time duration. Still, the stimuli used in these studies were not melodic. Predicting is one of the main behaviors of the brain....
Design and Implementation of a P300 Speller System by Using Auditory and Visual Paradigm
, M.Sc. Thesis Sharif University of Technology ; Hajipour Sardouie, Sepideh (Supervisor)
Abstract
The use of brain signals in controlling devices and communication with the external environment has been very much considered recently. The Brain-Computer Interface (BCI) systems enable people to easily handle most of their daily physical activity using the brain signal, without any need for movement. One of the most common BCI systems is P300 speller. In this type of BCI systems, the user can spell words without the need for typing with hands. In these systems, the electrical potential of the user's brain signals is distorted by visual, auditory, or tactile stimuli from his/her normal state. An essential principle in these systems is to exploit appropriate feature extraction methods which...
Design and Implementing an Evaluator Platforn for Cochlear Implent Devices
, M.Sc. Thesis Sharif University of Technology ; Hajipour, Sepideh (Supervisor) ; Molaei, Behnam (Co-Supervisor)
Abstract
The auditory system with its unique features has been considered by researchers in the past and its various parts from the outside of the body to its internal parts have been studied. The auditory nervous system, as the most important part of the auditory system, is responsible for receiving and processing information from the ear. The auditory system has different anatomical and physiological characteristics. The result of these characteristics is processing power in the field of time and frequency, which has received more attention in this dissertation. This processing power is most evident in the central auditory nervous system. This section includes nerve neurons and synapses from the...
Detection of High Frequency Oscillations from ECoG Recordings in Epileptic Patients
, M.Sc. Thesis Sharif University of Technology ; Hajipour, Sepideh (Supervisor) ; Sinaei, Farnaz (Co-Supervisor)
Abstract
The processing of brain signals, including the electrocorticogram (ECoG) signal, is widely used in the investigation of neurological diseases. Conventionally, the ECoG signal has frequency components up to the range of 80 Hz. Studies have proven that in some conditions, such as epilepsy, the brain signal includes frequency components higher than 80 Hz, which are called high-frequency oscillations (HFO). Therefore, HFOs are recognized as a biomarker for epilepsy. The aim of this thesis is to review the previous methods of detecting HFOs and to present new methods with greater efficiency in the direction of diagnosis or treatment of epileptic patients. For this purpose, we used the ECoG data...
Utilizing Artificial Intelligence Technique in Acidizing Process of Asphaltenic Oil Wells
, M.Sc. Thesis Sharif University of Technology ; Ayatollahi, Shahaboddin (Supervisor) ; Pishvaie, Mahmoud Reza (Supervisor)
Abstract
The Oil wells are usually damaged because of the drilling process and production scenarios or fluid injection during EOR processes. These damages would critically affect the rate of production and injectivity of the well in the form of plugging damage. Different methods are used to fix these damages and increase the production flow from the oil wells. One of the most widely used well-stimulation methods to remediate this challenge is well acidizing. Although this method has very high efficiency in improving the ability of wells, if it is not designed and implemented correctly and optimally, it can cause induced damage and even lead to the well shutting. This challenge is especially reported...
Multimodal Brain Source Localization
, Ph.D. Dissertation Sharif University of Technology ; Shamsollahi, Mohammad Bagher (Supervisor) ; Hajipour Sardouei, Sepideh (Supervisor)
Abstract
In most of brain studies, the primary objective is to find dipole activities, an underdetermined problem that requires additional constraints. Adequate constraints can be added by using information from other modalities. This research aims to develop a platform that combines various noninvasive modalities to improve localization accuracy. To accomplish this, two novel general approaches to combining modalities are proposed. In the first approach, the result of localizing by different methods and in different modalities are processed and combined in intervals by Dempster Shaffer's combination law. The final amount of bipolar activity is obtained by cumulating the activities obtained at...
Monte Carlo simulation of Feynman-α and Rossi-α techniques for calculation of kinetic parameters of Tehran research reactor
, Article Annals of Nuclear Energy ; Volume 38, Issue 10 , 2011 , Pages 2140-2145 ; 03064549 (ISSN) ; Vosoughi, N ; Hosseini, M ; Sharif University of Technology
2011
Abstract
Noise analysis techniques including Feynman-α (variance-to-mean) and Rossi-α (correlation) have been simulated by MCNP computer code to calculate the prompt neutron decay constant (α0), effective delayed neutron fraction (βeff) and neutron generation time (Λ) in a subcritical condition for the first operating core configuration of Tehran Research Reactor (TRR). The reactor core is considered to be in zero power (reactor power is less than 1 W) in the entire simulation process. The effect of some key parameters such as detector efficiency, detector position and its dead time on the results of simulation has been discussed as well. The results of proposed method in the current study are...
Semisolid Stir Joining of AZ91 Magnesium alloy
, M.Sc. Thesis Sharif University of Technology ; Aashuri, Hosseini (Supervisor)
Abstract
AZ91 is the most applicable alloy of magnesium alloys.Semisolid stir welding of AZ91 magnesium alloy was investigated due to its welding problem such oxide formation, hot cracking in weld metal, and high residual stress through solidification with special focus on the effect of the welding temperatures, stirring rates, and tool shape. The interlayer with thickness of 2mm was located between two AZ91 pieces with 7.5mm thickness. Then, they were heated to the desired temperatures (515C, 530C and 540C), the semisolid temperature of both base metal and interlayer. A grooved stirrer with six rotational speeds from 0rpm to 2000rpm was introduced into the stir weld seam and the welded coupons...
Calculation of fuel burn up and radioactive inventory for HEU fuel element of Tehran Research Reactor
, Article International Conference on Nuclear Engineering, Proceedings, ICONE, 17 May 2010 through 21 May 2010 ; Volume 2 , 2010 ; 9780791849309 (ISBN) ; Vosoughi, N ; Hosseini, M ; Nuclear Engineering Division ; Sharif University of Technology
2010
Abstract
This paper presents a new approach for fuel burn up evaluation and radioactive inventory calculation used in Tehran Research Reactor. The approach is essentially based upon the utilization of a program written by C# which integrates the cell and core calculation codes, i.e., WIMSD-4 and CITVAP, respectively. Calculation of fuel burn up and radioactive inventories has been done for 26 core configuration of Tehran Research Reactor with HEU fuel element. The present inventory and fuel enrichment of each fuel element have been calculated
Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate-citrate gel
, Article Journal of Alloys and Compounds ; Volume 430, Issue 1-2 , 2007 , Pages 339-343 ; 09258388 (ISSN) ; Madaah Hosseini, H. R ; Nemati, Z. A ; Sharif University of Technology
2007
Abstract
The nitrate-citrate gel exhibits auto-catalytic behavior, which can be used to synthesize nanocrystalline YIG powders. In this study, yttrium iron garnet (Y3Fe5O12) nanocrystalline powders were prepared by a sol-gel auto-combustion process. The influence of metal nitrates to citric acid molar ratio (MN/CA) of the precursor solution on the combustion behavior and crystallite size of synthesized powders was investigated by scanning electron microscopy (SEM), thermal analyses (DTA/TGA) and X-ray diffraction (XRD). The results show that with increasing MN/CA value, the combustion rate increases and the single-phase YIG forms at a higher temperature. The crystallite size of the single phase YIG...
Experimental and numerical fatigue life study of cracked AL plates reinforced by glass/epoxy composite patches in different stress ratios
, Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 6 , 2021 , Pages 894-910 ; 15397734 (ISSN) ; Safarabadi, M ; Ganjiani, M ; Mohammadi, E ; Hosseini, A ; Sharif University of Technology
Bellwether Publishing, Ltd
2021
Abstract
In this study, the fatigue behavior of composite reinforced cracked aluminum 1050 plates is investigated experimentally and numerically. The tests are conducted in four different stress ratios between 0 and 1. At first step, plates with similar cracks and geometries have been prepared. Then the glass/epoxy patches have been attached to the cracked plates using Araldite 2015 adhesive. Fatigue load has been applied to three cases of samples including non-patch, one-side patch and two-side patch, where in all stress ratios the maximum force is considered constant. A three-dimensional finite element analysis is developed in ABAQUS. A good correlation between finite element results and the...
Preparation and characterization of nanocrystalline misch-metal-substituted yttrium iron garnet powder by the sol-gel combustion process
, Article International Journal of Applied Ceramic Technology ; Volume 5, Issue 5 , 26 August , 2008 , Pages 464-468 ; 1546542X (ISSN) ; Madaah Hosseini, H. R ; Nemati, Z. A ; Sharif University of Technology
2008
Abstract
Nanocrystalline Y3-xMMxFe5O12 powders (MM denotes Misch-metal, x = 0.0, 0.25, 0.5, 0.75, and 1.0) were synthesized by a sol-gel combustion method. Magnetic properties and crystalline structures were investigated using X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), and a scanning electron microscope. The XRD patterns showed that the single-phase garnet of Y3-xMMxFe5O12 was formed at x values ≤ 1.0. The saturation magnetization of powders increased with decreasing MM content and reached the maximum value at Y3 Fe5O12. The crystallite size of powders calcined at 800°C for 3 h was in the range of 38-53 nm. © 2008 American Ceramic Society
Synthesis of nanocrystalline yttrium iron garnets by sol-gel combustion process: The influence of pH of precursor solution
, Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 129, Issue 1-3 , 2006 , Pages 211-215 ; 09215107 (ISSN) ; Madaah Hosseini, H. R ; Nemati, Z. A ; Sharif University of Technology
2006
Abstract
The nitrate-citrate gels exhibit auto-catalytic behavior, which can be used to synthesize the nanocrystalline YIG powders. In this study yttrium iron garnet (Y3Fe5O12) nanocrystalline powders were prepared by a sol-gel auto-combustion process. The influence of pH value of the precursor solution on the combustion behavior and the garnet phase formation of synthesized powders were investigated by scanning electron microscopy (SEM), thermal analysis (DTA/TGA), infrared (IR) spectroscopy and X-ray diffraction technique (XRD). The results show that with increasing pH value, the combustion rate increases. The as-burnt powder prepared with pH 1 yielded a single phase YIG after calcination at 800...
Lattice Boltzmann simulation of TiO2-water nanofluid in a curved boundary domain at high Rayleigh numbers
, Article Computers and Fluids ; Volume 168 , 30 May , 2018 , Pages 159-169 ; 00457930 (ISSN) ; Saidi, M. H
Elsevier Ltd
2018
Abstract
In this paper, a two-component Lattice Boltzmann Method (LBM) has been utilized to simulate the natural convection of TiO2-water nanofluid in a curved geometry. The main purpose of this research is to study the effect of nanoparticle size and also boundary conditions on the thermal characteristics of the nanofluid. Furthermore, the effect of Rayleigh number (Ra) and volume fraction of nanoparticles (ϕ) on the average Nusselt number (Nuave) have been investigated. Two different thermal boundary conditions, namely adiabatic and constant temperature, have been considered in the current work for the curved boundaries. The Rayleigh number varies from 103 to 109. Four different sizes, namely 10,...
High accurate three-dimensional neutron noise simulator based on GFEM with unstructured hexahedral elements
, Article Nuclear Engineering and Technology ; Volume 51, Issue 6 , 2019 , Pages 1479-1486 ; 17385733 (ISSN) ; Sharif University of Technology
Korean Nuclear Society
2019
Abstract
The purpose of the present study is to develop the 3D static and noise simulator based on Galerkin Finite Element Method (GFEM) using the unstructured hexahedral elements. The 3D, 2G neutron diffusion and noise equations are discretized using the unstructured hexahedral by considering the linear approximation of the shape function in each element. The validation of the static calculation is performed via comparison between calculated results and reported data for the VVER-1000 benchmark problem. A sensitivity analysis of the calculation to the element type (unstructured hexahedral or tetrahedron elements) is done. Finally, the neutron noise calculation is performed for the neutron noise...
Neutron spectrum unfolding using artificial neural network and modified least square method
, Article Radiation Physics and Chemistry ; Volume 126 , 2016 , Pages 75-84 ; 0969806X (ISSN) ; Sharif University of Technology
Elsevier Ltd
2016
Abstract
In the present paper, neutron spectrum is reconstructed using the Artificial Neural Network (ANN) and Modified Least Square (MLSQR) methods. The detector's response (pulse height distribution) as a required data for unfolding of energy spectrum is calculated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Unlike the usual methods that apply inversion procedures to unfold the energy spectrum from the Fredholm integral equation, the MLSQR method uses the direct procedure. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry of neutron sources, the neutron pulse height distribution is...
3D neutron diffusion computational code based on GFEM with unstructured tetrahedron elements: A comparative study for linear and quadratic approximations
, Article Progress in Nuclear Energy ; Volume 92 , 2016 , Pages 119-132 ; 01491970 (ISSN) ; Sharif University of Technology
Elsevier Ltd
2016
Abstract
In the present study, the comparison between the results obtained from the linear and quadratic approximations of the Galerkin Finite Element Method (GFEM) for neutronic reactor core calculation was reported. The sensitivity analysis of the calculated neutron multiplication factor, neutron flux and power distributions in the reactor core vs. the number of the unstructured tetrahedron elements and order of the considered shape function was performed. The cost of the performed calculation using linear and quadratic approximation was compared through the calculation of the FOM. The neutronic core calculation was performed for both rectangular and hexagonal geometries. Both the criticality and...
Development of galerkin finite element method three-dimensional computational code for the multigroup neutron diffusion equation with unstructured tetrahedron elements
, Article Nuclear Engineering and Technology ; Volume 48, Issue 1 , 2016 , Pages 43-54 ; 17385733 (ISSN) ; Sharif University of Technology
Korean Nuclear Society
2016
Abstract
In the present paper, development of the three-dimensional (3D) computational code based on Galerkin finite element method (GFEM) for solving the multigroup forward/adjoint diffusion equation in both rectangular and hexagonal geometries is reported. Linear approximation of shape functions in the GFEM with unstructured tetrahedron elements is used in the calculation. Both criticality and fixed source calculations may be performed using the developed GFEM-3D computational code. An acceptable level of accuracy at a low computational cost is the main advantage of applying the unstructured tetrahedron elements. The unstructured tetrahedron elements generated with Gambit software are used in the...