Loading...
Search for:
hosseini-kordkheili--ali
0.146 seconds
Total 3407 records
Computation of Three Dimensional J_Integral in Functionally Graded Material With Finite Element Method
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
The J-integral, as a powerful tool in fracture mechanics, is used to analysis of fracture behavior of materials. In order to, evaluate of three dimensional J-integral, an integral evaluation of line and surface is required. However, because surface integral evaluation requires the calculation of the second derivative of displacement field, an commercial finite element codes cannot calculate it.In this thesis, a method for computing 3D J-integral is presented using finite element analysis. In the analysis, the second derivative evaluation of displacement field is employed. In this method, error-minimal points for stress computation are not suitable for second derivative displacement...
Composite Redesigning of a Metallic Wing Structure of a Jet Aircraft
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
Today, for construction of UAV, designers are interested in and trying for substitution of composite material instead of metal. They would rather use composite structures due to lower costs of construction, availability, along with high ratio of strength to weight of this material, while metal structures are mainly rare and too expensive for construction of UAV. For instance, unavailability of aluminum metal and complicated methods of construction of aluminum wings with using of special tools, justifies using of composite with easier construction, abundant, and cheaper materials. The main goal of this project is redesign of aluminum wing of a jet engine UAV, In fact, by doing some structural...
Finite Element Method and Analytical Approach Solutions for a Conical Axisymmetric Shell Structure Under Random Acoustic Loading
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
When vibration of the structure is unrecognized we call it random vibrations which their analysis is very important in space structures because these structures are exposed to acoustic forces or forces produced by turbulence of the atmosphere when a spacecraft is launched. Also in the aviation field, the random vibration analysis use to examine the response of the aircraft and missile structures to atmospheric turbulence and gust. In this research dominated equations of a truncated conical axisymmetric shell structure with linearized approximation of Love’s equations under uniform pressure is utilized. Considering displacements in the form of Frobenius series expansion the frequencies and...
Effects of Piezoelectric Patches Placement and Sizing on Dynamic Behavior of Multilayer Sandwich Panels using Finite Element Method
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
This thesis focuses on how the dimensions and location of piezoelectric patches affect thedynamic behavior of multi layered sandwich panels by the use of finite element method (FEM). To accomplish this objective the finite element formulation of the problem, including coupling of electrical and mechanical characteristic equations for piezoelectric patches is derived. Finite element modeling of sandwich panels is presented on the basis of classic theory and also first order shear displacement hypothesis for multi-layered plates. To perform finite element analysis, ABAQUS is utilized and the development procedure of a finite element model by this software is also introduced. After verifying...
Thermal Local Buckling of Metal Truncated Conical Shells with Composite Rainforced Layers by Finite Element Method
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
In this study, the thermal buckling behavior of thin metal liner reinforced by composite shell in present of the initial imperfection is investigated. For this purpose, the Ryzener – Myndlyn shear-deformation theory & the virtual work method are used to extract equilibrium equations. In this work, the conical shell with c-c, s-s, c-f boundary conditions has been studied. The outer layer of reinforced composite is exposed to constant ambient temperature and iner layer is exposed to heat. Metal liner and reinforced composite shell are merged with together. In other words, the degrees of freedom at each node for both shells are assumed to be equal. Solution method is finite element method using...
Delamination Effect on Frequecny Response of a Laminated Composite Plate Using Piezoelectric Patches
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
Composite structures are subjected to different kinds of loadings in different workspaces, and sometimes these load conditions can damage them. Delamination is a common damage in composites. In this research, the delamination effect on modal behavior of a laminated composite plate is studied. To investigate this effect, the frequency response method is used and piezoelectric patches are used as a sensor and an actuator for extracting the frequency response. The aim of this project is to investigte presence and severity of the delamination. To survey the frequency response method, an intact and some damaged plates with one sensor and actuator are modeled with abaqus software and frequency...
Analysis of Delamination in Fiber-reinforced Composite Laminates Using Multiscale Modeling
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
This study presents delamination in fiber-reinforced composite laminates by using multiscale modeling. The meso modeling is used to derive the relationship between microcrack density and damage parameters. Next the selected failure model is applied to analyze the macroscale modeling. The progress of failure terms and the reduction of fiber and matrix properties implemented into ABAQUS/Standard, which enables an individual to create a new material behavior through the user subroutine UMAT. In the following, the contours associated with each of the damage parameters are obtained in each of the damage mode. Then for a specific material, the relationship between microcrack density and damage...
A Nonlinear Layerwise Shell Finite Element for Delamination Analysis of Laminated Composite Structures under Large Deformation
, Ph.D. Dissertation Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
This thesis aims to develop a numerically efficient nonlinear layer-wise shell element formulation for delamination analysis of laminated composite shell structures. The element, in a mesoscale scheme, is formulated based on a zig-zag theory and features three translational degrees of freedom for each node on the mid-surface of the shell in addition with two rotational degrees of freedom for each layer. In this way, the displacement field is formulated via adapting the Mindlin-Reissner theory in each layer and an ordered second-order algorithm for finite rotations. To verify the proposed formulation, many popular benchmark problems for geometric nonlinear analysis of shell problems are...
Micro-Mechanical Analysis of Matrix Shear Deformation Effect on Energy Release Rate of Fiber/Matrix Interface Debond in Unidirectional Fiber-Reinforced Plastic Composites
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
The present thesis deals with the effect of matrix shear deformation on energy released due to debonding at fiber/matrix interface during fiber pull out test, which is modeled using two concentric cylinders representing fiber and matrix. Tensile on fiber causes a shear stress at the interface. When this stress exceeds the tensile strength of the interface, debonding occurs at the interface and grows as a crack along the interface. This debonding causes a relative axial displacement between fiber and matrix along the debonded interface, which varies along the debond crack. How fiber/matrix relative displacement changes along the debond region is not known. Thus, the fiber/matrix interface is...
A Multi-Scale Method for Modeling and Analysis of the Creep Behavior in Composite plates
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
Polymer matrix composites, which are composed of a wide variety of short or long fibers bound together by organic polymer matrix, have been widely utilized in many engineering aeras, particularly in aerospace engineering. Recently, studying and analyzing the mechanical behavior of composites was one of the major reaserch interests. Regarding the vast variety of data drived from experimental tests, a requirement of tools that could facilitate estimating creep properties of materials is an important concern for researchers. The present work at first, introduces some major creep models and then proposes a 3D creep Burgers model for implementing in abaqus which could be used in macro phase. This...
A Layerwise Dynamic Non-Linear Formulation for Multi-Layered Panels in the Presence of Viscoelastic Layer and Sma Wires
, Ph.D. Dissertation Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
This thesis aims to introduce a numerical method for investigating the appropriate arrangement of visco-pseudo-elastic dampers applicable to shell and plate structures under large deformation. These passive dampers are considered as viscoelastic layers and discrete shape memory alloy (SMA) wires in which this combination improves their overall efficiency and reduces their drawbacks. Also, the main advantages of these dampers are discussed during some illustrative problems. The current finite element formulation is based on an incremental updated Lagrangian (UL) approach along with the Newmark's integration technique. In the layerwise shell element, the Mindlin-Reissner theory is adopted in...
The Evaluation of Different Parameters on Fatigue Life of Carbon / Epoxy and Carbon / Phenolic Polymer Composite Rods under Tensile-pressure Loads
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
The aim of this dissertation is to analyze the tensile-stress fatigue of composite rods made of a combination of carbon-epoxy resin as well as carbon chopped-phenolic resin and to investigate the effect of different parameters on their fatigue life. The curing process is completely different in carbon / epoxy and carbon / phenolic composites, Carbon / Epoxy is a thermo-plastic composite, but carbon / phenolic is a thermo- set composite. Therefore, differences in the curing process, raw materials, changes in the volume percentage of resin and fibers, the effects of different loading during the production and curing process of the composite, cooling and heating rates during production can...
Calculation of Heterogenous Material Properties by Using of Eshelby based and BEM Methods
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
To days the heterogeneous material are used extensively in the engineering materials. Optimization ability is a key feature of these materials to reach desired properties. Heterogeneous materials are the materials that make up from the constituents of multiphase materials in lower length scale such as mesoscopic, microscopic or/and Nano scales. So the properties of these materials at each scale are depending on to several characteristics of heterogeneities such as geometry, material and packing. In these materials the effects of heterogeneities at the lower scales are very significant and the constitutive equations are different for each range of scale. The proper selection of this range...
A Micromechanical Progressive Damage Algorithm for Prediction of Failure in Composite Laminates
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
Macro models which are used to predict failure of composite structures in most cases predict ¬reasonable results; however, they are not able to consider micro level parameters such as micro cracks. Furthermore, these failure macro models need various empirical data. Considering micromechanical construction of composites; including fiber, matrix and their interfaces, using micromechanical models for predicting failures in these phases is more appropriate. The aim of this study is to represent a micro-mechanical algorithm in order to predict progressive failures of fiber-reinforced composites. The failure model which is used in this study is a micromechanical modeling of failure (MMF) model,...
Effects of Employing Vibro Absorbing Coating on Vibration Behavior of a Stiffened Panel
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
In this thesis the effects of vibro absorbing coating on vibration behavior of an aluminum sheet and also on a stiffened aluminum panel are investigated using experimental approach. Since there wasn't any information available about the used coating, to find its viscoelastic material properties, the method mentioned in ASTM E756-05 standard is employed and corresponding tests are performed.
In the next step, an analytical solution developed for the aluminum sheet with viscoelastic coating and the obtained results compared with experimentation, in order to find its prediction accuracy for loss in “loss factor” of the system in presence of coating.
To study the effect of...
In the next step, an analytical solution developed for the aluminum sheet with viscoelastic coating and the obtained results compared with experimentation, in order to find its prediction accuracy for loss in “loss factor” of the system in presence of coating.
To study the effect of...
Development of a Layer-wise Model For Prediction of Interlaminar Crack Growth in Laminated Composites Plates Under Cyclic Loading
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
In the present work, the beginning and progressive growth of delamination in laminated composites plates has been studied. Interlaminar stresses at free edge of laminate may give rise to edge delamination and result in failure of laminate. So we need to determine the exact interlaminar stresses to predict the failure of laminated composites. A computer code based on layerwise theory that can obtain the exact interlaminar stresses been developed. Comparison between the present study and finite element software result showed the good agreement.A fracture mechanics approach is used to analysis delamination propagation between layers of composites laminate. In this approach damage propagation...
Interlaminar Stresses Analysis of Spherical Shell with Arbitrary Laminations and Boundary Conditions under Transverse Loads
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
Today, composites are widely used in various industries, thus the study and analysis of properties and their behaviors are very important. In addition, the use of multi-layered composites in the aerospace industry is important. The composite-elastomer structures, specially their spherical shape, are widely used as flexible joint in aerospace industries, such as the thrust vector control system in solid-propellant rockets and the helicopter industry. In this study, an analytical approach is proposed for calculating the interlaminar stresses of laminated plates and spherical shells with arbitrary laminations and boundary conditions based on a threedimensional multi-term extended Kantorovich...
Analysis and Design of Morphing Wing based on Smart and Adaptive Structures
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
The material presented in thesis uses concepts of finite element and doublet panel method to develop a structural aerodynamic coupled mathematical model for the analysis of morphing wing tip composed of smart materials. Much research is currently being performed within many facets of engineering on the use of smart of intelligent material. Examples of the beneficial characteristics of smart materials might include altering a structure's mechanical properties, controlling its dynamic response and sensing flaw that might progressively become detrimental to the structure. This thesis describes a bio inspired adaptive structure that will be used in morphing an aircraft's wing tip. The actuation...
Dynamic Analysis of Structure with Modal Properties Identification of Its Substructures Using Component Mode Synthesis
, M.Sc. Thesis Sharif University of Technology ; Hosseini Kordkheili, Ali (Supervisor)
Abstract
The substructuring method provides a suitable tool to conduct modal analysis of large and complicated structures. In this method the original structure is decomposed into simpler and smaller substructures, and the dynamic properties of the resulting substructures are first evaluated independently. The original structure’s dynamic properties are subsequently estimated by coupling the substructures’ dynamic results. In this procedure, the boundary conditions need to be imposed in such a way that the overall behaviour of the original structure is properly represented. Substructuring method can be used in different types of dynamic analysis. The focus of this paper is on the modal type of...
Effect of Nano Carbon Tube Particles on Fatigue Strength of Composite Polymers
, M.Sc. Thesis Sharif University of Technology ; Hosseini kordkheili, Ali (Supervisor)
Abstract
By increasing growth of the composite materials and achieving nano-materials and understanding the unique and specific properties, using materials for production with ideal specifications widely spread. So far nano-materials were used for strengthening materials and producing composite and then nano composites were produced.
Regarding to widespread use of polymer matrix composites, nano particles for reinforcement polymers were used. Thus desirable and unexpected properties were observed in polymer matrix nano composites.
In this project, due to the unique properties of carbon nano tubes such as high strength and modulus, low density, and high ratio of length to diameter. They are...
Regarding to widespread use of polymer matrix composites, nano particles for reinforcement polymers were used. Thus desirable and unexpected properties were observed in polymer matrix nano composites.
In this project, due to the unique properties of carbon nano tubes such as high strength and modulus, low density, and high ratio of length to diameter. They are...