Loading...
Search for: hosseini-kordkheili--s--a
0.157 seconds

    A lumped parameter model for exponentially tapered piezoelectric beam in transverse vibration

    , Article Journal of Mechanical Science and Technology ; Volume 33, Issue 5 , 2019 , Pages 2043-2048 ; 1738494X (ISSN) Fakharian, O ; Salmani, H ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2019
    Abstract
    Tapered piezoelectric beams, because of their more efficiency to generate power, are required to be analyzed by simple models. In this paper, single degree of freedom (SDOF) relations are used to model transvers vibration of an exponentially tapered piezoelectric beam. For this purpose, first, response of the damped cantilevered Euler–Bernoulli beam with base excitation is obtained. Then, lumped parameters of the beam are extracted in order to calculate the SDOF model response. Comparing the Euler-Bernoulli beam model with the SDOF model shows that the lumped parameter model is not accurate enough to predict the beam’s response. Therefore, a tapering parameter dependent correction factor is... 

    Nonlinear dynamics of viscoelastic pipes conveying fluid placed within a uniform external cross flow

    , Article Applied Ocean Research ; Volume 94 , 2020 Shahali, P ; Haddadpour, H ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper investigates the nonlinear dynamic response of a viscoelastic pipe conveying fluid subjected to a uniform external cross flow based on the Euler-Bernoulli theory. The main objective of this work is to find the proper viscoelastic coefficients to mitigate the dynamic response of a marine riser. A nonlinear oscillator is utilized to simulate the mean drag force and the vortex-induced lift force. Also, the pipe material is assumed to be viscoelastic and consisted of the Kelvin-Voigt type. The extended Hamilton's principle along with the Galerkin discretization are employed to construct the nonlinear model of the coupled fluid-structure system. Moreover, the assumed mode method along... 

    An exact Analytical solution to exponentially tapered piezoelectric energy harvester

    , Article Shock and Vibration ; Volume 2015 , 2015 ; 10709622 (ISSN) Salmani, H ; Rahimi, G. H ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    Hindawi Publishing Corporation  2015
    Abstract
    It has been proven that tapering the piezoelectric beam through its length optimizes the power extracted from vibration based energy harvesting. This phenomenon has been investigated by some researchers using semianalytical, finite element and experimental methods. In this paper, an exact analytical solution is presented to calculate the power generated from vibration of exponentially tapered unimorph and bimorph with series and parallel connections. The mass normalized mode shapes of the exponentially tapered piezoelectric beam with tip mass are implemented to transfer the proposed electromechanical coupled equations into modal coordinates. The steady states harmonic solution results are... 

    Effective mechanical properties of unidirectional composites in the presence of imperfect interface

    , Article Archive of Applied Mechanics ; Vol. 84, issue. 6 , June , 2014 , pp. 807-819 ; Print ISSN: 0939-1533 Hosseini Kordkheili, S. A ; Toozandehjani, H ; Sharif University of Technology
    2014
    Abstract
    In this paper, the equivalent inclusion method is implemented to estimate the effective mechanical properties of unidirectional composites in the presence of an imperfect interface. For this purpose, a representative volume element containing three constituents, a matrix, and interface layer, and a fiber component, is considered. A periodic eigenstrain defined in terms of Fourier series is then employed to homogenize non-dilute multi-phase composites. In order to take into account the interphase imperfection effects on mechanical properties of composites, a stiffness parameter in terms of a matrix and interphase elastic modulus is introduced. Consistency conditions are also modified... 

    Thermoelastic creep analysis of a functionally graded various thickness rotating disk with temperature-dependent material properties

    , Article International Journal of Pressure Vessels and Piping ; Volume 111-112 , 2013 , Pages 63-74 ; 03080161 (ISSN) Hosseini Kordkheili, S. A ; Livani, M ; Sharif University of Technology
    2013
    Abstract
    A semi-analytical solution for rotating axisymmetric disks made of functionally graded materials was previously proposed by Hosseini Kordkheili and Naghdabadi [1]. In the present work the solution is employed to study thermoelastic creep behavior of the functionally graded rotating disks with variable thickness in to the time domain. The rate type governing differential equations for the considered structure are derived and analytically solved in terms of rate of strain as a reduced to a set of linear algebraic equations. The advantage of this method is to avoid simplifications and restrictions which are normally associated with other creep solution techniques in the literature. The thermal... 

    A layerwise finite element for geometrically nonlinear analysis of composite shells

    , Article Composite Structures ; Volume 186 , 2018 , Pages 355-364 ; 02638223 (ISSN) Hosseini Kordkheili, S. A ; Soltani, Z ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This work aims to develop a nonlinear layerwise shell element formulation for shear-deformable laminated composite plate and shell structures. The element is formulated based on a zigzag theory in presence of individual local coordinates in the thickness direction for separate layers. In order to properly employ the zigzag theory, the considered local coordinates have different ranges of variation for middle, upper and lower layers. Using Mindlin-Reissner theory a convenient displacement field is derived for each layer and an ordered algorithm is adapted to calculate increments in the director vector of each layer due to relative finite rotations of its adjacent layers. Employing this shear... 

    Geometrically non-linear thermoelastic analysis of functionally graded shells using finite element method

    , Article International Journal for Numerical Methods in Engineering ; Volume 72, Issue 8 , 2007 , Pages 964-986 ; 00295981 (ISSN) Hosseini Kordkheili, S. A ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    A finite element formulation governing the geometrically non-linear thermoclastic behaviour of plates and shells made of functionally graded materials is derived in this paper using the updated Lagrangian approach. Derivation of the formulation is based on rewriting the Green-Lagrange strain as well as the 2nd Piola-Kirchhoff stress as two second-order functions in terms of a through-the-thickness parameter. Material properties are assumed to vary through the thickness according to the commonly used power law distribution of the volume fraction of the constituents. Within a non-linear finite element analysis framework, the main focus of the paper is the proposal of a formulation to account... 

    Thermoelastic analysis of functionally graded cylinders under axial loading

    , Article Journal of Thermal Stresses ; Volume 31, Issue 1 , 2008 , Pages 1-17 ; 01495739 (ISSN) Hosseini Kordkheili, S. A ; Naghdabadi, R ; Sharif University of Technology
    2008
    Abstract
    An analytical thermoelasticity solution for hollow finite-length cylinders made of functionally graded materials exposed to thermal loads, internal pressure and axial loadings is presented. For this purpose, the governing differential equations of equilibrium are obtained using the principle of minimum total potential energy. A first-order shear deformation shell theory, which accounts for the transverse shear strains and rotations, is considered for expressing displacement field. The governing differential equations are reduced to a set of linear algebraic equations using Fourier expansion series of the displacement field components in the axial coordinate. Subsequently, solution of the... 

    Exploring the tensile strain energy absorption of hybrid modified epoxies containing soft particles

    , Article Materials and Design ; Volume 32, Issue 5 , 2011 , Pages 2900-2908 ; 02641275 (ISSN) Abadyan, M ; Bagheri, R ; Kouchakzadeh, M. A ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    2011
    Abstract
    In this paper, tensile strain energy absorption of two different hybrid modified epoxies has been systematically investigated. In one system, epoxy has been modified by amine-terminated butadiene acrylonitrile (ATBN) and hollow glass spheres as fine and coarse modifiers, respectively. The other hybrid epoxy has been modified by the combination of ATBN and recycled Tire particles. The results of fracture toughness measurement of blends revealed synergistic toughening for both hybrid systems in some formulations. However, no evidence of synergism is observed in tensile test of hybrid samples. Scanning electron microscope (SEM), transmission optical microscope (TOM) and finite element (FEM)... 

    Bonded composite patch repair’s fiber VF effects on damaged Al-plates fatigue employing a multi-scale algorithm

    , Article Journal of Reinforced Plastics and Composites ; 12 July , 2020 Davoodi Moallem, M ; Barzegar, M ; Abedian, A ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Recently, bonded composite patch repair, because of its significant advantages over traditional methods, has been highly accepted in several industries, particularly in aerospace applications. In this paper, a multi-scale finite element algorithm is proposed to simulate crack growth of repaired plates under fatigue load by considering the effects of composite micro-scale properties. The algorithm is verified through conducting an experimental set up and the proposed model is in reasonable agreement with experiments. The influences of different fiber volume fractions (VF), number of layers and fiber orientation of composite patch on the fatigue responses of adhesively bonded patch are... 

    On the multi-scale computation of un-bonded flexible risers

    , Article Engineering Structures ; Volume 32, Issue 8 , August , 2010 , Pages 2287-2299 ; 01410296 (ISSN) Bahtui, A ; Alfano, G ; Bahai, H ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    2010
    Abstract
    The purpose of this paper is to model the detailed effects of interactions that take place between components of un-bonded flexible risers, and to study the three-dimensional motion responses of risers when subjected to axial loads, bending moments, and internal and external pressures. A constitutive law for un-bonded flexible risers is proposed and a procedure for the identification of the related input parameters is developed using a multi-scale approach. A generalized finite element structural model based on the Euler-Bernoulli beam theory is developed in which the constitutive law is embedded. The beam theory is enhanced by the addition of suitable pressure terms to the generalized... 

    Mechanical properties of double-layered graphene sheets

    , Article Computational Materials Science ; Volume 69 , 2013 , Pages 335-343 ; 09270256 (ISSN) Hosseini Kordkheili, S. A ; Moshrefzadeh Sani, H ; Sharif University of Technology
    2013
    Abstract
    In this paper, the molecular structural mechanics method is employed to calculate the mechanical properties of a double-layered carbon graphene sheet more accurately. For this purpose, covalent bonds are modeled using nonlinear beam elements and van der Waals interactions are replaced by nonlinear truss elements. Morse potential and Lennard-Jones potential equations are used to simulate the covalent bonds and van der Waals interactions, respectively. For each atom, van der Waals forces are considered with respect to all the other atoms located in its cut-off radius. In addition to in-plane mechanical properties of single and double-layered graphene sheets some out-of-plane properties like... 

    A stabilized piezolaminated nine-nodded shell element formulation for analyzing smart structures behaviors

    , Article Mechanics of Advanced Materials and Structures ; Volume 23, Issue 2 , 2016 , Pages 187-194 ; 15376494 (ISSN) Hosseini Kordkheili, S. A ; Salmani, H ; Afshari, S. S. G ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    An explicit hybrid stabilization method is utilized together with a reduced order integration scheme to stabilize spurious zero energy modes from the sub-integrated degenerated shell element. This stabilization is achieved after employing appropriate contravariant higher order stress modes. The relevant finite element formulation of the piezolaminated nine-nodded shell element is then derived to analyze smart structures behaviors. To show the capabilities of the presented formulation, it has been implemented in a finite element code. The developed code is used to analyze some typical problems. The results are compared with those obtained from other schemes in the literature and experiments  

    An updated Lagrangian finite element formulation for large displacement dynamic analysis of three-dimensional flexible riser structures

    , Article Ocean Engineering ; Volume 38, Issue 5-6 , 2011 , Pages 793-803 ; 00298018 (ISSN) Hosseini Kordkheili, S. A ; Bahai, H ; Mirtaheri, M ; Sharif University of Technology
    2011
    Abstract
    An updated Lagrangian finite element formulation of a three-dimensional annular section beam element is presented for large displacement and large rotation dynamic analyses of flexible riser structures. In this formulation a new linearization method is used to avoid inaccuracies normally associated with other linearization schemes. The effects of buoyancy force as well as steady state current loading are considered in the finite element solution for riser structures response. The formulation has been implemented in a nonlinear finite element code and the results are compared with those obtained from other schemes reported in the literature  

    Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory

    , Article Structural Engineering and Mechanics ; Volume 66, Issue 5 , 10 June , 2018 , Pages 621-629 ; 12254568 (ISSN) Hosseini Kordkheili, S. A ; Mousavi, T ; Bahai, H ; Sharif University of Technology
    Techno Press  2018
    Abstract
    By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos. Copyright © 2018 Techno-Press,... 

    Clearance effects on dynamic behavior of a continuous mechanical system

    , Article JVC/Journal of Vibration and Control ; Volume 21, Issue 13 , October , 2015 , Pages 2509-2519 ; 10775463 (ISSN) Hosseini Kordkheili, S. A ; Momeni Massouleh, S. H ; Khorasani, R ; Sharif University of Technology
    SAGE Publications Inc  2015
    Abstract
    An analytical modified method is presented to investigate the clearance effects on the dynamic behavior of cantilever beams. In this work, apart from clearance, all other nonlinearities are avoided to be considered during the analytical solution. The beam is idealized using an equivalent single-degree-of-freedom structure. A tri-linear stiffness system is also adopted to simulate the beam together with the clearance. Subsequently the analytical solution is derived for a cantilever beam structure with and without considering structural damping. The experimental method is employed to verify the results from the presented analytical solutions. It is noted that the results obtained by the... 

    Experimental identification of closely spaced modes using NExT-ERA

    , Article Journal of Sound and Vibration ; Volume 412 , 2018 , Pages 116-129 ; 0022460X (ISSN) Hosseini Kordkheili, S. A ; Momeni Massouleh, S. H ; Hajirezayi, S ; Bahai, H ; Sharif University of Technology
    Academic Press  2018
    Abstract
    This article presents a study on the capability of the time domain OMA method, NExT-ERA, to identify closely spaced structural dynamic modes. A survey in the literature reveals that few experimental studies have been conducted on the effectiveness of the NExT-ERA methodology in case of closely spaced modes specifically. In this paper we present the formulation for NExT-ERA. This formulation is then implemented in an algorithm and a code, developed in house to identify the modal parameters of different systems using their generated time history data. Some numerical models are firstly investigated to validate the code. Two different case studies involving a plate with closely spaced modes and... 

    A rate-dependent constitutive equation for 5052 aluminum diaphragms

    , Article Materials and Design ; Vol. 60, Issue 1 , 2014 , pp. 13-20 ; ISSN: 02613069 Hosseini Kordkheili, S. A ; Ashrafian, M. M ; Toozandehjani, H ; Sharif University of Technology
    2014
    Abstract
    In this article, both experimental and numerical approaches are conducted to present a constitutive equation for 5052 aluminum diaphragms under quasi-static strain rate loadings. For this purpose the stress-strain curves at different strain rates are obtained using tensile tests. Brittle behavior during tensile tests is observed due to samples thin thicknesses. Employing Johnson-Cook constitutive equation no yields in reasonable agreement with these tensile tests results. Therefore, developing a more suitable constitutive equation for aluminum diaphragms is taken into consideration. This equation is then implemented into the commercial finite element software, ABAQUS, via a developed user... 

    On the geometrically nonlinear analysis of sandwich shells with viscoelastic core: a layerwise dynamic finite element formulation

    , Article Composite Structures ; Volume 230 , 2019 ; 02638223 (ISSN) Hosseini Kordkheili, A ; Khorasani, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The objective of this work is to present a finite element formulation for dynamic analysis of sandwich shells with viscoelastic core under large deformation. The present study is based on an incremental updated Lagrangian approach together with the Newmark integration scheme. The viscoelastic constitutive model which is used to define the behavior of the core, comes from the Riesz theorem and the corresponding creep functions are estimated using Dirichlet-Prony series. Also, the viscoelastic deferred strain is derived in an appropriate incremental form using the state variables. The employed layerwise shell element which is based on zig-zag theory has eight nodes on its mid layer. What's... 

    Thermoelastic analysis of a functionally graded rotating disk

    , Article Composite Structures ; Volume 79, Issue 4 , 2007 , Pages 508-516 ; 02638223 (ISSN) Hosseini Kordkheili, A ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    A semi-analytical thermoelasticity solution for hollow and solid rotating axisymmetric disks made of functionally graded materials is presented. The radial domain is divided into some virtual sub-domains in which the power-law distribution is used for the thermomechanical properties of the constituent components. Imposing the necessary continuity conditions between adjacent sub-domains, together with the global boundary conditions, a set of linear algebraic equations are obtained. Solution of the linear algebraic equations yields the thermoelastic responses for each sub-domain as exponential functions of the radial coordinate. Some results for the stress, strain and displacement components...