Loading...
Search for: hosseini-vajargah--s
0.134 seconds

    Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate-citrate gel

    , Article Journal of Alloys and Compounds ; Volume 430, Issue 1-2 , 2007 , Pages 339-343 ; 09258388 (ISSN) Hosseini Vajargah, S ; Madaah Hosseini, H. R ; Nemati, Z. A ; Sharif University of Technology
    2007
    Abstract
    The nitrate-citrate gel exhibits auto-catalytic behavior, which can be used to synthesize nanocrystalline YIG powders. In this study, yttrium iron garnet (Y3Fe5O12) nanocrystalline powders were prepared by a sol-gel auto-combustion process. The influence of metal nitrates to citric acid molar ratio (MN/CA) of the precursor solution on the combustion behavior and crystallite size of synthesized powders was investigated by scanning electron microscopy (SEM), thermal analyses (DTA/TGA) and X-ray diffraction (XRD). The results show that with increasing MN/CA value, the combustion rate increases and the single-phase YIG forms at a higher temperature. The crystallite size of the single phase YIG... 

    Preparation and characterization of nanocrystalline misch-metal-substituted yttrium iron garnet powder by the sol-gel combustion process

    , Article International Journal of Applied Ceramic Technology ; Volume 5, Issue 5 , 26 August , 2008 , Pages 464-468 ; 1546542X (ISSN) Hosseini Vajargah, S ; Madaah Hosseini, H. R ; Nemati, Z. A ; Sharif University of Technology
    2008
    Abstract
    Nanocrystalline Y3-xMMxFe5O12 powders (MM denotes Misch-metal, x = 0.0, 0.25, 0.5, 0.75, and 1.0) were synthesized by a sol-gel combustion method. Magnetic properties and crystalline structures were investigated using X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), and a scanning electron microscope. The XRD patterns showed that the single-phase garnet of Y3-xMMxFe5O12 was formed at x values ≤ 1.0. The saturation magnetization of powders increased with decreasing MM content and reached the maximum value at Y3 Fe5O12. The crystallite size of powders calcined at 800°C for 3 h was in the range of 38-53 nm. © 2008 American Ceramic Society  

    Synthesis of nanocrystalline yttrium iron garnets by sol-gel combustion process: The influence of pH of precursor solution

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 129, Issue 1-3 , 2006 , Pages 211-215 ; 09215107 (ISSN) Hosseini Vajargah, S ; Madaah Hosseini, H. R ; Nemati, Z. A ; Sharif University of Technology
    2006
    Abstract
    The nitrate-citrate gels exhibit auto-catalytic behavior, which can be used to synthesize the nanocrystalline YIG powders. In this study yttrium iron garnet (Y3Fe5O12) nanocrystalline powders were prepared by a sol-gel auto-combustion process. The influence of pH value of the precursor solution on the combustion behavior and the garnet phase formation of synthesized powders were investigated by scanning electron microscopy (SEM), thermal analysis (DTA/TGA), infrared (IR) spectroscopy and X-ray diffraction technique (XRD). The results show that with increasing pH value, the combustion rate increases. The as-burnt powder prepared with pH 1 yielded a single phase YIG after calcination at 800... 

    Monte Carlo simulation of Feynman-α and Rossi-α techniques for calculation of kinetic parameters of Tehran research reactor

    , Article Annals of Nuclear Energy ; Volume 38, Issue 10 , 2011 , Pages 2140-2145 ; 03064549 (ISSN) Hosseini, S. A ; Vosoughi, N ; Hosseini, M ; Sharif University of Technology
    2011
    Abstract
    Noise analysis techniques including Feynman-α (variance-to-mean) and Rossi-α (correlation) have been simulated by MCNP computer code to calculate the prompt neutron decay constant (α0), effective delayed neutron fraction (βeff) and neutron generation time (Λ) in a subcritical condition for the first operating core configuration of Tehran Research Reactor (TRR). The reactor core is considered to be in zero power (reactor power is less than 1 W) in the entire simulation process. The effect of some key parameters such as detector efficiency, detector position and its dead time on the results of simulation has been discussed as well. The results of proposed method in the current study are... 

    Neutron noise simulator based on the boundary element method (BEM)

    , Article Annals of Nuclear Energy ; Volume 159 , 2021 ; 03064549 (ISSN) Hosseini, S. A ; Mohamadbeygi, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The purpose of the present study is to develop the neutron diffusion solver and neutron noise simulator based on the Boundary Element Method (BEM). The 2-D, 2-G neutron/adjoint diffusion equation and corresponding neutron/adjoint noise equation were solved using the mentioned method. The developed neutron static and noise simulator based on the finite element method gives accurate results when the more number of the elements is used. The motivation of the present research is to use the boundary element method to reduce the computational cost. The boundary element method attempts to use the given boundary conditions to fit boundary values into the integral equation, rather than values... 

    High-Photoresponsive backward diode by two-dimensional SnS2/Silicon heterostructure

    , Article ACS Photonics ; Volume 6, Issue 3 , 2019 , Pages 728-734 ; 23304022 (ISSN) Hosseini, S. A ; Esfandiar, A ; Iraji Zad, A ; Hosseini Shokouh, S. H ; Mahdavi, S. M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Two-dimensional semiconductor materials can be combined with conventional silicon-based technology and sort out part of the future challenges in semiconductor technologies due to their novel electrical and optical properties. Here, we exploit the optoelectronics property of the silicon/SnS2 heterojunction and present a new class of backward diodes using a straightforward fabrication method. The results indicate an efficient device with fast photoresponse time (5-10 μs), high photoresponsivity (3740 AW-1), and high quantum efficiency (490%). We discuss device behavior by considering the band-to-band tunneling model and band bending characteristics of the heterostructure. This device structure... 

    Neutron spectrum unfolding using artificial neural network and modified least square method

    , Article Radiation Physics and Chemistry ; Volume 126 , 2016 , Pages 75-84 ; 0969806X (ISSN) Hosseini, S. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In the present paper, neutron spectrum is reconstructed using the Artificial Neural Network (ANN) and Modified Least Square (MLSQR) methods. The detector's response (pulse height distribution) as a required data for unfolding of energy spectrum is calculated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Unlike the usual methods that apply inversion procedures to unfold the energy spectrum from the Fredholm integral equation, the MLSQR method uses the direct procedure. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry of neutron sources, the neutron pulse height distribution is... 

    3D neutron diffusion computational code based on GFEM with unstructured tetrahedron elements: A comparative study for linear and quadratic approximations

    , Article Progress in Nuclear Energy ; Volume 92 , 2016 , Pages 119-132 ; 01491970 (ISSN) Hosseini, S. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In the present study, the comparison between the results obtained from the linear and quadratic approximations of the Galerkin Finite Element Method (GFEM) for neutronic reactor core calculation was reported. The sensitivity analysis of the calculated neutron multiplication factor, neutron flux and power distributions in the reactor core vs. the number of the unstructured tetrahedron elements and order of the considered shape function was performed. The cost of the performed calculation using linear and quadratic approximation was compared through the calculation of the FOM. The neutronic core calculation was performed for both rectangular and hexagonal geometries. Both the criticality and... 

    Development of galerkin finite element method three-dimensional computational code for the multigroup neutron diffusion equation with unstructured tetrahedron elements

    , Article Nuclear Engineering and Technology ; Volume 48, Issue 1 , 2016 , Pages 43-54 ; 17385733 (ISSN) Hosseini, S. A ; Sharif University of Technology
    Korean Nuclear Society  2016
    Abstract
    In the present paper, development of the three-dimensional (3D) computational code based on Galerkin finite element method (GFEM) for solving the multigroup forward/adjoint diffusion equation in both rectangular and hexagonal geometries is reported. Linear approximation of shape functions in the GFEM with unstructured tetrahedron elements is used in the calculation. Both criticality and fixed source calculations may be performed using the developed GFEM-3D computational code. An acceptable level of accuracy at a low computational cost is the main advantage of applying the unstructured tetrahedron elements. The unstructured tetrahedron elements generated with Gambit software are used in the... 

    Neutron spectroscopy with soft computing: Development of a computational code based on Support Vector Machine (SVM) for reconstruction of neutron energy spectrum

    , Article Journal of Instrumentation ; Volume 14, Issue 2 , 2019 ; 17480221 (ISSN) Hosseini, S. A ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    This paper presents a developed computational code based on Support Vector Machine (SVM) for reconstruction of energy spectrum of neutron source. To reconstruct unknown energy spectrum using known neutron pulse height distribution, the developed machine is trained by known neutron pulse height distribution of detector and corresponding energy spectrum of neutron source. Validation and testing are the next steps to verify the validity of the calculations done with the developed computational code. The calculated neutron pulse height distributions due to randomly generated energy spectrum using MCNPX-ESUT (MCNPX-Energy engineering of Sharif University of Technology) computational code are used... 

    Neutron spectroscopy with soft computing: Unfolding of the neutron energy spectrum using the developed computer code based on Adaptive Group of Ink Drop Spread (AGIDS)

    , Article Journal of Instrumentation ; Volume 14, Issue 3 , 2019 ; 17480221 (ISSN) Hosseini, S. A ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    This paper presents the developed computer codes based on the Adaptive Group of Ink Drop Spread (AGIDS) algorithm [1] for the reconstruction of the energy spectrum of the neutron source. The required data are generated via simulation of the neutron pulse height distributions due to randomly generated energy spectra with the MCNPX-ESUT computer code [2]. The simulated neutron pulse height distributions and corresponding randomly generated energy spectra are the input and output data of the developed computer code, respectively. As a case study, the 241Am-9Be neutron source is studied and the simulation of the neutron pulse height distribution of the NE-213 liquid organic scintillator is... 

    Sensitivity analysis of the galerkin finite element method neutron diffusion solver to the shape of the elements

    , Article Nuclear Engineering and Technology ; Volume 49, Issue 1 , 2017 , Pages 29-42 ; 17385733 (ISSN) Hosseini, S. A ; Sharif University of Technology
    Korean Nuclear Society  2017
    Abstract
    The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with... 

    Calculation of fuel burn up and radioactive inventory for HEU fuel element of Tehran Research Reactor

    , Article International Conference on Nuclear Engineering, Proceedings, ICONE, 17 May 2010 through 21 May 2010 ; Volume 2 , 2010 ; 9780791849309 (ISBN) Hosseini, S. A ; Vosoughi, N ; Hosseini, M ; Nuclear Engineering Division ; Sharif University of Technology
    2010
    Abstract
    This paper presents a new approach for fuel burn up evaluation and radioactive inventory calculation used in Tehran Research Reactor. The approach is essentially based upon the utilization of a program written by C# which integrates the cell and core calculation codes, i.e., WIMSD-4 and CITVAP, respectively. Calculation of fuel burn up and radioactive inventories has been done for 26 core configuration of Tehran Research Reactor with HEU fuel element. The present inventory and fuel enrichment of each fuel element have been calculated  

    Advanced binder-free electrode based on core–shell nanostructures of mesoporous Co3V2O8-Ni3V2O8 thin layers@porous carbon nanofibers for high-performance and flexible all-solid-state supercapacitors

    , Article Chemical Engineering Journal ; Volume 341 , 2018 , Pages 10-26 ; 13858947 (ISSN) Hosseini, H ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The development of thin layer structures on flexible current collectors has become as an effective strategy for preparing advanced portable and wearable power sources. Herein, a flexible and efficient electrode was fabricated based on electrospun porous carbon nanofibers (PCNFs) substrate with elaborately designed thin layer Co3V2O8-Ni3V2O8 core–shell nanostructures (Co3V2O8-Ni3V2O8 TLs@PCNFs). The resulting free-standing Co3V2O8-Ni3V2O8 TLs@PCNFs composite was used directly as a flexible electrode in three electrode system for supercapacitor studies without the need for utilization of either binder or metal-based current collector. The unique thin layer structure of Co3V2O8-Ni3V2O8... 

    Self-supported nanoporous Zn–Ni–Co/Cu selenides microball arrays for hybrid energy storage and electrocatalytic water/urea splitting

    , Article Chemical Engineering Journal ; Volume 375 , 2019 ; 13858947 (ISSN) Hosseini, H ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The phase-pure multiple ternary or quaternary metal selenides in energy boosting, have not been reported yet. Here, self-supported porous crystalline Zn–Ni–Co/Cu selenides microballs arrays were constructed by selenation of the designed tubular Cu(OH)2 arrays decorated with ultrathin Zn–Co–Ni tri-metallic hydroxide on carbon cloth substrate. For this rational engineering, a novel precursor sample was firstly prepared by conversion of deposited Cu layer to hollow tubular Cu(OH)2 arrays on carbon cloth, then, Zn-Co–Ni layered ternary hydroxides with a thin layer structure was deposited around this tubular arrays. The selenation with an exciting morphology change from amorphous tube to highly... 

    Vanadium dioxide-anchored porous carbon nanofibers as a Na+ intercalation pseudocapacitance material for development of flexible and super light electrochemical energy storage systems

    , Article Applied Materials Today ; Volume 10 , 2018 , Pages 72-85 ; 23529407 (ISSN) Hosseini, H ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The development of a flexible binder free electrode based on 3D vanadium dioxide (VO2) nano-architectures has materialized as an effective strategy for fabrication of advanced wearable, portable, and stretchable electronic devices. However, most of the stretchable energy storage devices based on VO2 suffer from a relatively low operating voltage, high weight, low specific capacitance, and thus low energy density. Here, a novel binder free supercapacitor electrode composed of hierarchical VO2 nanosheet arrays grown on porous carbon nanofibers (VO2@PCNFs) is designed using a simple hydrothermal method followed by annealing treatment. The electrochemical evaluation confirmed that the energy... 

    New hybrid multi criteria decision making method for offshore windfarm site location in Persian Gulf, Iran

    , Article Ocean Engineering ; Volume 256 , 2022 ; 00298018 (ISSN) Hosseini Dehshiri, S. S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Choosing the right location for the sustainable development of offshore wind energy plays an important role in the success of renewable projects. In this regard, in the present study, a new application of the hybrid Fuzzy-SWARA & Fuzzy-WASPAS method was presented to prioritize the suitable area for developing offshore wind projects. For a case study, five regions with high potential for offshore wind energy in the Persian-Gulf have been investigated. Economic assessment was evaluated using the Levelized Cost of energy method. Evaluation of offshore wind farms has been analyzed from various aspects including technical, economic, social, environmental and risk. The SWARA was used for weighting... 

    Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach

    , Article Renewable Energy ; Volume 186 , 2022 , Pages 889-903 ; 09601481 (ISSN) Jahangiri, M ; Rezaei, M ; Mostafaeipour, A ; Goojani, A.R ; Saghaei, H ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Renewable hydrogen production plays a key role in transitioning to a hydrogen economy. For this, developing countries are encouraged to keep up with industrialized nations. As such, this study seeks to evaluate the potential of all capital cities of Iran in terms of solar-based hydrogen production and prioritize the nominated alternatives. This step is highly valued because finding the most suitable place for this purpose can lead to substantial outcomes and consequently avoid failure. Therefore, here a 20-kW solar power plant is simulated by PVsyst 6.7 software and meteorological data of 31 capital cities is extracted using Meteonorm 7.1 software. Considering all losses associated with... 

    Scanning tunneling spectroscopy of MoS2 monolayer in presence of ethanol gas

    , Article Materials Research Express ; Volume 5, Issue 4 , April , 2018 ; 20531591 (ISSN) Hosseini, S. A ; Iraji Zad, A ; Berahman, M ; Aghakhani Mahyari, F ; Hosseini Shokouh, S. H ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    Due to high surface to volume ratio and tunable band gap, two dimensional (2D) layered materials such as MoS2, is good candidate for gas sensing applications. This research mainly focuses on variation of Density of States (DOS) of MoS2 monolayes caused by ethanol adsorption. The nanosheets are synthesized by liquid exfoliation, and then using Scanning Tunneling Spectroscopy (STS) and Density Functional Theory (DFT), local electronic characteristic such as DOS and band gap in non-vacuum condition are analyzed. The results show that ethanol adsorption enhances DOS and deform orbitals near the valence and conduction bands that increase transport of carriers on the sheet. © 2018 IOP Publishing... 

    A generalized set of correlations for plus fraction characterization

    , Article Petroleum Science ; Volume 9, Issue 3 , August , 2012 , Pages 370-378 ; 16725107 (ISSN) Jamialahmadi, M ; Zangeneh, H ; Hosseini, S. S ; Sharif University of Technology
    Springer  2012
    Abstract
    The importance of accurate determination of the critical properties of plus fractions in prediction of phase behaviour of hydrocarbon mixtures by equations of state is well known in the petroleum industry. It has been stated in various papers (Elsharkawy, 2001) that using the plus fraction as a single group in equation of state calculations reduces the accuracy of the results. However in this work it has been shown that using the proper values of critical temperature and pressure for the plus fraction group can estimate the properties of hydrocarbon mixtures, and they are accurate enough to be used in reservoir engineering and enhanced oil recovery calculations. In this paper, a new method...