Loading...
Search for: hosseinpour--m
0.105 seconds

    Investigation of heat transfer enhancement in a microchannel heat sink with the aid of internal fins: a metamodel approach

    , Article Computer Aided Chemical Engineering ; Volume 48 , 2020 , Pages 85-90 Hosseinpour, V ; Kazemeini, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Heat transfer enhancement with microchannel tools has been increased in recent year. In this study effect of geometric parameters as well as Reynolds number have been studied with experimental design approach. A metamodel was generated in this study for pressure drop and average Nusselt number passed all statistical tests. Order of an individual effect upon a response has been evaluated and interaction effects have been determined. Numerical results indicated that heat transfer increased significantly with inserting pyramidal micro fins. © 2020 Elsevier B.V  

    An efficient approach to cathode operational parameters optimization for microbial fuel cell using response surface methodology

    , Article Journal of Environmental Health Science and Engineering ; Vol. 12, issue. 1 , 2014 Hosseinpour, M ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    2014
    Abstract
    Background: In the recent study, optimum operational conditions of cathode compartment of microbial fuel cell were determined by using Response Surface Methodology (RSM) with a central composite design to maximize power density and COD removal. Methods: The interactive effects of parameters such as, pH, buffer concentration and ionic strength on power density and COD removal were evaluated in two-chamber microbial batch-mode fuel cell. Results: Power density and COD removal for optimal conditions (pH of 6.75, buffer concentration of 0.177 M and ionic strength of cathode chamber of 4.69 mM) improve by 17 and 5%, respectively, in comparison with normal conditions (pH of 7, buffer concentration... 

    An experimental design approach to determine effects of the operating parameters on the rate of Ru promoted Ir carbonylation of methanol

    , Article World Academy of Science, Engineering and Technology ; Volume 73 , March , 2011 , Pages 598-603 ; 2010376X (ISSN) Hosseinpour, V ; Kazemini, M ; Mohammadrezaee, A ; Sharif University of Technology
    2011
    Abstract
    carbonylation of methanol in homogenous phase is one of the major routesfor production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the reaction rate, experimental design for this system based upon central composite design (CCD) was utilized. Statistical rate equation developed by this method contained individual, interactions and curvature effects of parameters on the reaction rate. The model with p-value less than 0.0001 and R 2 values greater than 0.9; confirmeda... 

    Optimisation of Ru-promoted Ir-catalysed methanol carbonylation utilising response surface methodology

    , Article Applied Catalysis A: General ; Volume 394, Issue 1-2 , February , 2011 , Pages 166-175 ; 0926860X (ISSN) Hosseinpour, V ; Kazemeini, M ; Mohammadrezaee, A ; Sharif University of Technology
    2011
    Abstract
    In this study, central composite design (CCD) at five levels (-1.63, -1, 0, +1, +1.63) combined with response surface methodology (RSM) have been applied to optimise methanol carbonylation using a ruthenium-promoted iridium catalyst in a homogenous phase. The effect of seven process variables, including temperature, pressure, iridium, ruthenium, methyl iodide, methyl acetate and water concentrations, as well as their binary interactions, were modelled. The determined R 2 values greater than 0.9 for the rate and methane formation data confirmed that the quadratic equation properly fitted the obtained experimental data. The optimum conditions for maximum rate and minimum methane formation were... 

    A study of the water-gas shift reaction in Ru-promoted Ir-catalysed methanol carbonylation utilising experimental design methodology

    , Article Chemical Engineering Science ; Volume 66, Issue 20 , October , 2011 , Pages 4798-4806 ; 00092509 (ISSN) Hosseinpour, V ; Kazemeini, M ; Mohammadrezaee, A ; Sharif University of Technology
    2011
    Abstract
    The water-gas shift reaction occurs competitively to the main reaction of the Ir-catalysed methanol carbonylation process. To study the effect of seven factors including temperature, pressure, iridium, ruthenium, methyl iodide, methyl acetate and water concentrations on the formation of hydrogen and carbon dioxide as a result of the water-gas shift reaction and other side reactions in the carbonylation of methanol to acetic acid, the experimental design method combined with response surface methodology (RSM) was utilised. Central composite design at five levels (with α=1.63) was used to design experiments. A quadratic model that included the main and interaction effects of variables for H 2... 

    Developing a metamodel based upon the DOE approach for investigating the overall performance of microchannel heat sinks utilizing a variety of internal fins

    , Article International Journal of Heat and Mass Transfer ; Volume 149 , 2020 Hosseinpour, V ; Kazemeini, M ; Rashidi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, the effects of geometry and operating conditions upon the thermal and hydraulic performance of Finned Microchannel Heat Sink (FMCHS) were investigated. Water and aluminum were considered as fluid and solid for the computational domain (30 mm × 0.8 mm × 0.8 mm). The Microchannel (MC) was supposed to have 0.65 mm height with an aspect ratio of 0.5. CFD analysis was applied for the assessments of four-types of micro-fins (i.e., conical, pyramidal, cylindrical and cubical). In order to evaluate the effects of height, diameter, the spacing of fins and Reynolds number on the overall performance of FMCHS, central composite design at five levels was used to generate design points.... 

    Adsorption behavior of toxic metal Ions on nano-structured CuO granules

    , Article Separation Science and Technology (Philadelphia) ; Volume 47, Issue 7 , 2012 , Pages 1063-1069 ; 01496395 (ISSN) Ahmadi, S. J ; Sadjadi, S ; Hosseinpour, M ; Sharif University of Technology
    2012
    Abstract
    In this study, copper oxide nano particles were synthesized by batchwise supercritical hydrothermal method. After preparation of CuO nano particles, they were immobilized into the porous matrix of sodium alginate. The drying process formed a very porous structure that is useful for enhancing of adsorption activity. Produced CuO particles were characterized by X-ray diffractometery (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET for measuring the surface area. The prepared materials were then used as adsorbent in the removal of toxic metal ions in aqueous solution. To optimize the adsorption system, the effect of various parameters such as adsorbent... 

    Adsorption of lead ions in aqueous solution using Yttrium oxide nanoparticles

    , Article Journal of Nano Research ; Volume 16 , 2011 , Pages 83-87 ; 16625250 (ISSN) Sadjadi, S ; Ahmadi, S. J ; Hosseinpour, M ; Sharif University of Technology
    2011
    Abstract
    By a single-step supercritical hydrothermal synthesis method, yttrium oxide nanoparticles were successfully prepared without additional treatment. Yttrium oxide nanoparticles were employed as an adsorbent to study the adsorption of some heavy metal ions. This study revealed that nano structure yttrium oxide was an effective adsorbent for removal of lead ions from aqueous solutions  

    A green protocol for Erlenmeyer-Plöchl reaction by using iron oxide nanoparticles under ultra sonic irradiation

    , Article Ultrasonics Sonochemistry ; Volume 20, Issue 1 , 2013 , Pages 408-412 ; 13504177 (ISSN) Ahmadi, S. J ; Sadjadi, S ; Hosseinpour, M ; Sharif University of Technology
    2013
    Abstract
    Azlactones have been prepared via Erlenmeyer synthesis from aromatic aldehydes and hippuric acid using Fe 2O 3 nanoparticles under ultrasonic irradiation. Short reaction times, easy and quick isolation of the products, and excellent yields are the main advantages of this procedure  

    Granulated copper oxide nanocatalyst: A mild and efficient reusable catalyst for the one-pot synthesis of 4-amino-5-pyrimidinecarbonitriles under aqueous conditions

    , Article Monatshefte fur Chemie ; Volume 142, Issue 11 , November , 2011 , Pages 1163-1168 ; 00269247 (ISSN) Ahmadi, S. J ; Sadjadi, S ; Hosseinpour, M ; Sharif University of Technology
    2011
    Abstract
    An efficient method for the synthesis of 4-amino-5-pyrimidinecarbonitriles by the three-component reaction of malononitrile, aldehydes, and N-unsubstituted amidines under aqueous conditions using CuO microspheres as catalyst is reported. The catalyst exhibited remarkable reusable activity. Graphical abstract: [Figure not available: see fulltext.]  

    CuO nanoparticles: A mild and efficient reusable catalyst for the one-pot synthesis of 4-amino-5-pyrimidinecarbonitriles under aqueous conditions

    , Article Defect and Diffusion Forum ; Volume 326-328 , 2012 , Pages 372-376 ; 10120386 (ISSN) ; 9783037854006 (ISBN) Ahmadi, S. J ; Sadjadi, S ; Hosseinpour, M ; Sharif University of Technology
    2012
    Abstract
    An efficient method for the synthesis of 4-amino-5-pyrimidinecarbonitriles by three-component reaction of malononitrile, aldehydes and N-unsubstituted amidines, under aqueous conditions, using CuO nanoparticles as catalyst is reported. The protocol offers advantages in terms of higher yields, short reaction times, and mild reaction conditions, with reusability of the catalyst  

    Granulated copper oxide nano-catalyst: A novel and efficient catalyst for C-N cross-coupling of amines with iodobenzene

    , Article Monatshefte fur Chemie ; Volume 142, Issue 8 , 2011 , Pages 801-806 ; 00269247 (ISSN) Ahmadi, S. J ; Sadjadi, S ; Hosseinpour, M ; Abdollahi, M ; Sharif University of Technology
    2011
    Abstract
    Nano-structured CuO granules catalyze the C-N cross-coupling of amines with iodobenzene in excellent yields. The reaction is simple, efficient, and operates in air under ligand-free conditions  

    A simple granulation technique for preparing high-porosity nano copper oxide(II) catalyst beads

    , Article Particuology ; Volume 9, Issue 5 , 2011 , Pages 480-485 ; 16742001 (ISSN) Ahmadi, S. J ; Outokesh, M ; Hosseinpour, M ; Mousavand, T ; Sharif University of Technology
    2011
    Abstract
    A simple and efficient method was developed for fabricating spherical granules of CuO catalyst via a three-step procedure. In the first step, copper oxide nanoparticles were synthesized by hydrothermal decomposition of copper nitrate solution under supercritical condition. Then, they were immobilized in the polymeric matrix of calcium alginate, and followed by high-temperature calcination in an air stream as the third step, in which carbonaceous materials were oxidized, to result in a pebble-type catalyst of high porosity. The produced CuO nanoparticles were characterized by transmission electron microscopy (TEM) that revealed an average size of 5 nm, X-ray diffractometry (XRD), and thermo... 

    High temperature synthesis of SAPO-34: applying an L9 taguchi orthogonal design to investigate the effects of experimental parameters

    , Article Powder Technology ; Volume 217 , February , 2012 , Pages 223-230 ; 00325910 (ISSN) Dargahi, M ; Kazemian, H ; Soltanieh, M ; Hosseinpour, M ; Rohani, S ; Sharif University of Technology
    2012
    Abstract
    SAPO-34 zeolite-like particles were successfully synthesized at high temperature environment. An L9 orthogonal array of the Taguchi method was implemented to investigate the effects of experimental conditions to prepare SAPO-34 with respect to crystallinity of the final product phase. The results showed that the favorable phase crystallinity was improved by increasing the hydrothermal synthesis temperature and organic template content, whereas increasing the water content in synthesis mixture decreased the crystallinity. No significant changes in crystallinity of the final products were observed by increasing the synthesis duration. In addition, zeolite SAPO-5, which was formed as the... 

    Rapid high-temperature synthesis of SAPO-34 nanoparticles

    , Article Particuology ; Volume 9, Issue 5 , October , 2011 , Pages 452-457 ; 16742001 (ISSN) Dargahi, M ; Kazemian, H ; Soltanieh, M ; Rohani, S ; Hosseinpour, M ; Sharif University of Technology
    2011
    Abstract
    Decreasing particle size results in larger increase of external surface area and shorter diffusion path, both reducing mass and heat transfer resistances in catalysis and sorption. A rapid high-temperature hydrothermal synthesis method was developed to synthesize uniform nanoparticles of SAPO-34 zeolite with high crystallinity. To investigate the effects of temperature and synthesis time on purity and crystallinity of the final products, the crystallization temperature was increased from 468 to 673 K while the synthesis time was decreased from 24 h to 45 min. The products were characterized by XRD and SEM techniques. It was found that high temperature and short synthesis time reduce the... 

    An efficient fitness function for clustering of wireless sensor networks

    , Article International Journal of Sensors, Wireless Communications and Control ; Volume 10, Issue 3 , 2020 , Pages 318-324 Hoseinpour, A ; Jafari Lahijani, M. J ; Hosseinpour, M ; Kazemitabar, J ; Sharif University of Technology
    Bentham Science Publishers  2020
    Abstract
    Background & Objective: A sensor network is composed of a large number of sensor nodes that are deployed to perform measurement and/or command and control in a field. Sensor nodes are battery powered devices and replacement or recharging of their batteries may not be feasible. One of the major challenges with sensory wireless networks is excessive energy consumption in nodes. Clustering is one of the methods that has been offered for resolving this issue. In this paper, we pursue evolutionary clustering and propose a new fitness function that har-nesses multiple propagation indices. Methods: In this paper we develop an efficient fitness function by first selecting the best clusters, and then... 

    Design, manufacture and application of a microreactor for the decomposition of ethyl mercaptan on an H-ZSM-5 catalyst

    , Article Journal of Cleaner Production ; Volume 292 , 2021 ; 09596526 (ISSN) Hosseinpour, V ; Kazemeini, M ; Mohammadi, A ; Rashidi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Catalytic decomposition of the ethyl mercaptan over an H-ZSM-5 zeolite in a newly designed microreactor was undertaken in this study. A numerically developed distributor possessing superior flow distribution was amended to 24 parallel microchannels with 64 mm length, 700 μm width, and 600 μm depth. Ethyl mercaptan complete conversion required 350 °C through the developed microreactor while in a conventional fixed-bed-reactor 400 °C was needed. Higher selectivity towards the main products of this decomposition (hydrogen sulfide and ethylene) were observed in this microreactor in comparison to that of a fixed-bed-reactor. In addition, lower selectivity towards formation of byproducts was... 

    On water: A practical and efficient synthesis of benzoheterocycle derivatives catalyzed by nanocrystalline copper(II) oxide

    , Article Synthetic Communications ; Volume 40, Issue 4 , 2010 , Pages 607-614 ; 00397911 (ISSN) Sadjadi, S ; Hekmatshoar, R ; Ahmadi, S. J ; Hosseinpour, M ; Outokesh, M ; Sharif University of Technology
    2010
    Abstract
    Recyclable CuO nanoparticles provide an efficient, economic, and novel method for the synthesis of quinoxaline, benzoxazine, and benzothiazine. This method provides a wide range of substrate applicability, avoids the use of organic solvents, and gives benzoheterocycles in satisfactory yields  

    Ethylene glycol biodegradation in microbial fuel cell

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 38, Issue 8 , 2016 , Pages 1096-1102 ; 15567036 (ISSN) Hosseinpour, M ; Asadi, M ; Rahmani Eliato, T ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Ethylene glycol is an environmental pollutant, which exists in airport runoff and industrial waste. In this article, biodegradation of ethylene glycol in a two-chamber, batch-mode microbial fuel cell was investigated. Glucose and ethylene glycol at different concentrations were used as carbon and energy sources. Chemical oxygen demand removal in the range of 92-98% indicated that microbial fuel cell can be used for biodegradation of ethylene glycol. Ethylene glycol also improved power generation and the maximum power density was 5.72 mW/m2 (137.32 mW/m3), with respect to the same glucose and ethylene glycol concentrations (500 ppm)  

    A heterogeneous strong basic nanocrystalline copper(II) oxide catalyst for efficient synthesis of 4-keto-4,5,6,7-tetrahydrobenzofurans

    , Article Catalysis Communications ; Volume 10, Issue 10 , 2009 , Pages 1423-1426 ; 15667367 (ISSN) Ahmadi, S. J ; Sadjadi, S ; Hosseinpour, M ; Outokesh, M ; Hekmatshoar, R ; Sharif University of Technology
    2009
    Abstract
    An efficient synthesis of tetrahydrobenzofurans is carried out in one pot through the reaction of 1,3-diketone and phenacyl bromides compound using a heterogeneous basic nano particles copper oxide catalyst. The protocol offers advantages in terms of higher yields, short reaction times, and mild reaction conditions, with reusability of the catalyst. © 2009 Elsevier B.V. All rights reserved