Loading...
Search for: hosseinzadeh--zahra
0.255 seconds

    Modified carrageenan. 5. Preparation, swelling behavior, salt- and pH-sensitivity of partially hydrolyzed crosslinked carrageenan-graft-polymethacrylamide superabsorbent hydrogel [electronic resource]

    , Article Polymers for Advanced Technologies ; Volume 15, Issue 11, pages 645–653, November 2004 Pourjavadi, A. (Ali) ; Sadeghi, M ; Hosseinzadeh, H
    Abstract
    The polysaccharide, kappa-carrageenan (κC) was chemically modified to achieve a novel superabsorbent hydrogel via graft copolymerization of methacrylamide (MAM) onto the substrate followed by alkaline hydrolysis. Ammonium persulfate (APS) and N,N′-methylene bisacrylamide (MBA) were used as a free-radical initiator and a crosslinker, respectively. The saponification reaction was carried out using sodium hydroxide aqueous solution. Either κC-g-PMAM or hydrolyzed κC-g-PMAM (PMAM: polymethacrylamide) was characterized by FT-IR spectroscopy. The effect of grafting variables (i.e. concentration of MBA, MAM, and APS) and alkaline hydrolysis conditions (i.e. NaOH concentration, hydrolysis time and... 

    Modified carrageenan. 4. Synthesis and swelling behavior of crosslinked kappa C-g-AMPS superabsorbent hydrogel with antisalt and pH-responsiveness properties [electronic resource]

    , Article Journal of Applied Polymer Science ; Vol.98, No.1, 255-263, 2005 Pourjavadi, A. (Ali) ; Hosseinzadeh, H ; Mazidi, R
    Abstract
    To synthesize a novel biopolymer-based superabsorbent hydrogel, 2-acrylamido-2-methylpropanesulfonic acid (AMPS) was grafted onto kappa-carrageenan (KC) backbones. The graft copolymerization reaction was carried out in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator, N,N,N',N'-tetramethyl ethylenediamine (TMEDA) as an accelerator, and N,N'-methylene bisacrylamide (MBA) as a crosslinker. A proposed mechanism for KC-g-AMPS formation was suggested and the hydrogel structure was confirmed using FTIR spectroscopy. The affecting variables on swelling capacity, i.e., the initiator, the crosslinker, and the monomer concentration, as well as reaction temperature,... 

    Partially hydrolyzed crosslinked alginate-graft-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive Properties [electronic resource]

    , Article Macromolecular Research ; January 2005, Volume 13, Issue 1, pp 45-53 Pourjavadi, A. (Ali) ; Aminfazl, M. S ; Hosseinzadeh, H
    Abstract
    In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacrylamide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator andN,N′-methylenebisacrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g-PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-polymethacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the... 

    Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-Responsive nanocarrier for triggered release of erythromycin [electronic resource]

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2014, Volume 63, Issue 13, Pages 692-697 Pourjavadi, A. (Ali) ; Mazaheri Tehrani, Zahra ; Sharif University of Technology
    Abstract
    A pH-responsive drug delivery system based on core shell structure of mesoporous silica nanoparticle (MSN) and chitosan-PEG copolymer was prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and high-resolution transmission microscope (HR-TEM) techniques. In order to improve compatibility MSN and drug, mesoporous nanosilica was modified by 3-aminopropyl triethoxysilane. The release of erythromycin (a macrolide antibiotic) as a model drug was investigated in two pHs, 7.4 and 5.5  

    Wideband 5 W Ka-Band GaAs Power Amplifier

    , Article IEEE Microwave and Wireless Components Letters ; Volume 26, Issue 8 , 2016 , Pages 622-624 ; 15311309 (ISSN) Hosseinzadeh, N ; Medi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This letter presents a Ka-Band 0.1-μm GaAs pHEMT Power Amplifier with broad bandwidth. The isolating backvia wall (IBVW) has been proposed to improve the stability and performance. Over the frequency band of 31-40 GHz, implemented PA delivers 5 W saturated output power, 28% maximum power added efficiency (PAE) and 20 dB maximum small-signal gain. The chip size of the PA is 11.9 mm2. To the best of authors knowledge, the presented PA demonstrates widest bandwidth in Ka-band GaAs PAs while maintaining compact size  

    Theoretical and Computational Investigation of Quantum Plasmonic Properties of Nanocluster Dimers

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Erfan (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    In today's era, metal nanoparticles play an important role in technologies emerging from different sciences, such as chemistry, physics, optics, material science, due to their unique characteristics. In the development of nanooptics science, it can be said that metal nanoparticles play an important role. The ability of conductive electrons collective oscillation causes surface charge density fluctuations in nanoparticles, this phenomenon is known as surface plasmons. Surface plasmons are surprisingly coupled with light and cause the significant increase in the intensity of optical fields induced in nanoparticles. Therefore, with the presence of localized surface plasmons or plasmon... 

    Theoretical Investigation of Ab-initio MD Approach to Increase the Efficiency and Accuracy of VCD Spectrum Calculation

    , M.Sc. Thesis Sharif University of Technology Hadi, Hossein (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    Understanding of the Molecules is the main purpose of the chemistry. Ab-initio molecular dynamics (AIMD) as a branch of the computational chemistry, tries to give us a deep comprehension of the molecule, and its chemical, physical and optical activities. This comprehension, relies on the accuracy of quantum mechanics, in addition to the speed of the classical mechanics. The mixing of the quantum mechanics and the classical mechanics could simulate activities of the atoms in the time-domain, provided the mixing is done with precaution. This, in turn, helps us to forecast the response of a molecule in different situations, and also translating the macroscopic phenomena in a nanoscopic... 

    Investigation of Plasmonic Excitation in Carbonic Nanostructures Within Near-IR

    , M.Sc. Thesis Sharif University of Technology Madadi, Mahkam (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    To date, the plasmonic properties of many metallic and semi-conducting materials have been investigated and used in various industries. One of the plasmonic material categories that have always been considered is polycyclic aromatic hydrocarbon or PAH, whose plasmonic resonance energy depends on the charge state of the molecule. In this regard, it is easy to change the plasmonic resonance energy via changing the induced charge, which is a unique feature of the mentioned materials. In addition, plasmonic structures with excitations in the infrared region are able to enhance the vibration intensity of absorbed molecules by increasing the electric field around themselves. Therefore, they have... 

    Using Nonlinear Effects of Light for Optical Signal Processing

    , M.Sc. Thesis Sharif University of Technology Shatery, Farshid (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Ultrafast signal processing in time-domain with high resolution and reconfigura-bility is a challenging task. This paper, for the first time, introduces a time-varying metasurface consisting of graphene microribbon array for implementing time-lens in the terahertz domain. Given that the surface conductivity of graphene is proportional to the Fermi energy level in the THz regime, it is possible to change the phase property of the incident electromagnetic pulse by changing the Fermi level while the Fermi level itself is a function of voltage. Upon this fact, a quadratic temporal phase modulator, namely time-lens has been realized. This phase modulation is applied to the impinging signal in the... 

    Using Simulation-Optimization Approach for Fire Station Location and Vehicle Assignment Problem: a Case Study in Tehran, Iran

    , M.Sc. Thesis Sharif University of Technology Pirmohammadi, Ali (Author) ; Amini, Zahra (Supervisor)
    Abstract
    In this research, the problem of locating fire stations and allocating equipment has been studied and a simulation-optimization approach has been presented to solve the problem. The mathematical models of this research were developed based on the idea of the randomness of the covered demand and the maximum expected coverage model. In these models, the issue of non-availability of equipment to cover accidents, the random nature of accidents, various fire incidents and the equipment needed to cover them are considered. Two mathematical models with deterministic and non-deterministic approach with different scenarios for demand are proposed. The non-deterministic model is developed with the aim... 

    Introducing An Integrated Framework For Solving The Fleet Planning Problem Using A Simulation-Optimization Approach

    , M.Sc. Thesis Sharif University of Technology Sahebi, Armin (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the main concerns of industrial companies’ managers is providing an efficient logistics system. To achieve an efficient logistics system, the fleet planning problem is studied by many researchers in recent years. This problem consists of multiple sub-problems at three levels: operational, tactical, and strategic. These sub-problems are closely related to each other and need to be studied and addressed in an integrated manner. In this research, an attempt is made to provide an integrated framework to solve the vehicle routing problem (operational), outsourcing problem (tactical), and fleet composition problem (strategic). These problems have various uncertainties, including customer... 

    Analytical Modelling and Optimization of Disk Type, Slot Less Resolver

    , M.Sc. Thesis Sharif University of Technology Moheyseni, Atefeh (Author) ; Nasiri Gheidari, Zahra (Supervisor)
    Abstract
    Resolvers, due to their robust structure, are widely used in automation systems. Among the types of resolvers, the accuracy of the Wound Rotor (WR) resolver in the occurrence of common mechanical errors is higher than other types of resolvers. therefore, in this thesis, an AFWRR is studied to improve the performance. Increasing the number of poles in WR resolvers is a good solution for increasing the accuracy of these electromagnetic position sensors. However, high-speed WR resolvers due to employing fractional slot windings suffer from rich sub-harmonics in the induced voltages. A common solution for suppressing the undesirable sub-harmonics is using multi-layer winding with appropriate... 

    On the Zagreb indices of nanostar dendrimers

    , Article Optoelectronics and Advanced Materials, Rapid Communications ; Volume 4, Issue 3 , 2010 , Pages 378-380 ; 18426573 (ISSN) Hosseinzadeh, M. A ; Ghorbani, M ; Sharif University of Technology
    2010
    Abstract
    Let G be a graph. The first and second Zagreb index of G is defined as M1(G)= Σ degG(V)2 and M2(G)= Σ degG(u)degG(V) respectively. In this paper we compute Zagreb indices of chain graphs  

    Quantum integrability of 1D ionic hubbard model

    , Article Annalen der Physik ; Volume 532, Issue 3 , 2020 Hosseinzadeh, A ; Jafari, S. A ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    The quantum integrability of the 1D ionic Hubbard model (IHM) is established using two independent numerical methods, namely i) energy level spacing statistics and ii) occupation profile of one-particle density matrix (OPDM) eigen-values. Both methods suggest that the 1D IHM is integrable. The calculations of energy level statistics reproduce the known results for the standard Hubbard model. Upon turning on the the ionic term, the energy level spacing distribution of this model continues to obey the Poissonian distribution. Occupation patterns as extracted from OPDM indicate that quasi-particles are sharpened upon increasing the ionic potential. This is evidenced by a larger jump in the... 

    Generalization of Lieb–Wu wave function inspired by one-dimensional ionic Hubbard model

    , Article Annals of Physics ; Volume 414 , 2020 Hosseinzadeh, A ; Jafari, S. A ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    With the ionic Hubbard model (IHM) in mind, we construct a non-trivial generalization of the Bethe ansatz (BA) wave function which naturally generalizes the Lieb–Wu wave function with an ionic parameter Δ, and reduces to Lieb–Wu solution in the limit Δ→0. The resulting two-particle scattering matrix satisfies the Yang–Baxter equation. To the extent that the unit cells with more than two electrons (Choy–Haldane issue) are avoided on average, our wave function represents an effective solution for the one-dimensional IHM. The Choy–Haldane issue limits the validity of our solution to low-filling and large U≳4. This regime is attainable in cold atom realizations of the IHM. For this regime, we... 

    Design of Robust Controller for Depth of Anesthesia

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Mahdi (Author) ; Sadati, Nasser (Supervisor)
    Abstract
    Automatic control of depth of anesthesia is an important problem in biomedical engineering. The main challenging problem in anesthesia automation is inter-patients differences which is referred to as uncertainty and is crucial in robust controller design. One of the most appropriate tools in designing robust controllers is H_∞ concept. Furthermore, H_2 concept is used to reject the measurement noise which is unavoidable in practical cases. In this project we use mixed H_2/H_∞ concept to design robust controller for depth of anesthesia. Multi-model controller is another approach to design robust controller for depth of anesthesia, which reject measurement noise and also cover the... 

    Study of Effective Parameters on Roasting of Zinc Sulphide in a Fluidized Bed Reactor

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Soheil (Author) ; Halali, Mohammad (Supervisor)
    Abstract
    In this study, four parameters were investigated including temperature, inlet flow rate, gas composition (oxygen) and particle size on the roasting of Bama company zinc sulfide concentrate in Fluidized bed reactor. Initially, primary sample was heated in electric furnace at 125℃ for 24 hours until the moisture content dried. Then roasting operation was done at 700 and 900℃. The operation was carried out on three range of particle size including 300-500, 500-700 and 700-1000 microns and flow rate was greater than the minimum flow rate of Fluencing. To investigate the effect of flow rate and gas composition input, 500-700 micron particle size range was selected. The effect of 155, 172 and 188... 

    The Analytical Study of the Nonlinear Behavior of Conventional and Retrofitted Khorjini Connections

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Shahram (Author) ; Moghaddam, Hassan (Supervisor)
    Abstract
    The purpose of this research is to study the behavior of conventional and retrofitted Khorjini connections. Thus the software ABAQUS 6.11 was used to fabricate the FEM models of the connections with experimental prototypes. In analytical studies, 21 specimens with different size of the connection components were analyzed. True stress–strain curves for steel and weld materials were used and damage initiation and revolution were considered in the weld material. Also cracking of the welds were considered by a micromechanical method. Behavioral characteristics of the conventional connections are specified and appropriate relations are suggested, using Stability equations of the connection... 

    Design and Implementation of a Ka-band Power Amplifier in GaAs pHEMT

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Navid (Author) ; Medi, Ali (Supervisor)
    Abstract
    Power amplifiers are used as the last block of transmitters. This block can be categorized as the one of most important part in communication systems. However, in transmitter systems which require high power to create stable link with the receivers, fabrication process like CMOS are unable to provide such level of power. Thus, designers employ another group of integrated circuits which names MMIC that offers this capability to designers. In this thesis, design procedure of an amplifier in Ka frequency bands is studied. The power amplifier is fabricated in 0.1um GaAs pHEMT.The isolating backvia wall (IBVW) technique hasbeen proposed to improve gain and stability. Some other designtechniques... 

    Fermions in Lattice Gauge Theory, Ising Model and Non-Equilibrium Systems

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Ali (Author) ; Sadooghi, Néda (Supervisor)
    Abstract
    Non-equilibrium systems refer to systems in which, unlike equilibrium systems, the initial condition plays an important role. Conventional methods in quantum field theory cannot be used to study these systems because they do not necessarily have a convergent perturbative expansion.In this thesis, we first briefly introduce the Ising model and fermions in the lattice gauge theory. We then introduce the two-particle irreducible (2PI) method as a tool to investigate nonequilibrium systems. Finally, using this method, we reformulate the Ising model for a system out of equilibrium