Loading...
Search for: irani--r
0.101 seconds

    2D and 3D simulation of bubble columns using CFD methods

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Irani, M ; Bozorgmehri, R ; Sharif University of Technology
    2006
    Abstract
    This article presents the results of 2D and 3D simulations of a bubble column reactor at steady state conditions and low gas flow rates. The simulations have been done based on a two-fluid model with a k - ε model used for turbulence modeling. The experimental data have been obtained by differential pressure transducer. For analyzing of hydrodynamic parameters such as hold up and velocity profiles of phases, a system consists of water tank and air aerated from bottom is set up. The simulations have been done based on two different approaches which are mixture and eulerian approaches. Despite the fact that these approaches lead to similar results, the convergence and stability of eulerian... 

    Impact of thermodynamic non-idealities and mass transfer on multi-phase hydrodynamics

    , Article Scientia Iranica ; Volume 17, Issue 1 C , JANUARY-JUNE , 2010 , Pages 55-64 ; 10263098 (ISSN) Irani, M ; Pishvaie, M. R ; Sharif University of Technology
    2010
    Abstract
    Considering the non-ideal behavior of fluids and their effects on hydrodynamic and mass transfer in multiphase. flow is very essential. Simulations were performed that take into account the effects of mass transfer and mixture non-ideality on the hydrodynamics reported by Bozorgmehry et al In this paper, by assuming the density of phases to be. constant and using Raoult's law instead of EOS and the fugacity coefficient definition, respectively, for both liquid and gas phases, the importance of nonideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T = 323 K and P = 445 kPa) also indicated that the assumption of constant density... 

    Visible light switchable bR/TiO2 nanostructured photoanodes for bio-inspired solar energy conversion

    , Article RSC Advances ; Volume 5, Issue 24 , Jan , 2015 , Pages 18642-18646 ; 20462069 (ISSN) Naseri, N ; Janfaza, S ; Irani, R ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Today, regarding the limitation and environmental side effects of fossil fuel resources, solar hydrogen production is one of the main interests in the energy research area. The development of visible light sensitized semiconductors based on non-toxic components, low cost and available bio-species is an ongoing approach for H2 generation based on water splitting reactions. Here, two different morphologies of TiO2 photoanodes, nanoparticulated and nanotubular, have been modified with simply extracted bacteriorhodopsin (bR) without any linker. Achieving a significant enhancement in photoconversion efficiency of TiO2 photoanodes, η% was increased from 2.9 to 16.5 by bR addition to the TiO2... 

    GAG positioning on IL-1RI; A mechanism regulated by dual effect of glycosylation

    , Article Glycobiology ; Volume 29, Issue 11 , 2019 , Pages 803-812 ; 14602423 (ISSN) Azimzadeh Irani, M ; Ejtehadi, M. R ; Sharif University of Technology
    NLM (Medline)  2019
    Abstract
    IL-1RI is the signaling receptor for the IL-1 family of cytokines that are involved in establishment of the innate and acquired immune systems. Glycosylated extracellular (EC) domain of the IL-1RI binds to agonist such as IL-1β or antagonist ligands and the accessory protein to form the functional signaling complex. Dynamics and ligand binding of the IL-1RI is influenced by presence of the glycosaminoglycans (GAGs) of the EC matrix. Here a combination of molecular dockings and molecular dynamics simulations of the unglycosylated, partially N-glycosylated and fully N-glycosylated IL-1RI EC domain in the apo, GAG-bound and IL-1β-bound states were carried out to explain the co-occurring... 

    Glycan-mediated functional assembly of IL-1RI: structural insights into completion of the current description for immune response

    , Article Journal of Biomolecular Structure and Dynamics ; 2020 Azimzadeh Irani, M ; Ejtehadi, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Interleukin 1 Receptor type I (IL-1RI) is a multi-domain transmembrane receptor that triggers the inflammatory response. Understanding its detailed mechanism of action is crucial for treating immune disorders. IL-1RI is activated upon formation of its functional assembly that occurs by binding of the IL-1 cytokine and the accessory protein (Il-1RAcP) to it. X-ray crystallography, small-Angle X-ray Scattering and molecular dynamics simulation studies showed that IL-1RI adopts two types of ‘compact’ and ‘extended’ conformational states in its dynamical pattern. Furthermore, glycosylation has shown to play a critical role in its activation process. Here, classical and accelerated atomistic... 

    Glycan-mediated functional assembly of IL-1RI: structural insights into completion of the current description for immune response

    , Article Journal of Biomolecular Structure and Dynamics ; Volume 40, Issue 6 , 2022 , Pages 2575-2585 ; 07391102 (ISSN) Azimzadeh Irani, M ; Ejtehadi, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Interleukin 1 Receptor type I (IL-1RI) is a multi-domain transmembrane receptor that triggers the inflammatory response. Understanding its detailed mechanism of action is crucial for treating immune disorders. IL-1RI is activated upon formation of its functional assembly that occurs by binding of the IL-1 cytokine and the accessory protein (Il-1RAcP) to it. X-ray crystallography, small-Angle X-ray Scattering and molecular dynamics simulation studies showed that IL-1RI adopts two types of ‘compact’ and ‘extended’ conformational states in its dynamical pattern. Furthermore, glycosylation has shown to play a critical role in its activation process. Here, classical and accelerated atomistic... 

    Investigation of intense femto-second laser ionization and dissociation of methane with time-dependent density-functional approach

    , Article Chemical Physics Letters ; Vol. 604 , 2014 , Pages 60-67 ; ISSN: 00092614 Irani, E ; Sadighi Bonabi, R ; Anvari, A ; Sharif University of Technology
    2014
    Abstract
    Three dimensional calculations of electronic dynamics of CH4 in a strong laser field are presented with time-dependent density-functional theory. Time evolution of dipole moment and electron localization function is presented. The dependence of dissociation rate on the laser characters is shown and optimal effective parameters are evaluated. The optimum field leads to 76% dissociation probability for Gaussian envelope and 40 fs (FWHM) at 10 16 W cm-2. The dissociation probability is calculated by optimum convolution of dual short pulses. By combining of field assisted dissociation process and Ehrenfest molecular dynamics, time variation of bond length, velocity and orientation effect are... 

    Gamma rays transmutation of Palladium by bremsstrahlung and laser inverse Compton scattering

    , Article Energy Conversion and Management ; Vol. 77, issue , January , 2014 , p. 558-563 Irani, E ; Omidvar, H ; Sadighi-Bonabi, R ; Sharif University of Technology
    2014
    Abstract
    Photo-transmutation of hazardous long lived radioactive 107Pd induced by bremsstrahlung and Compton scattering is carried out. Photonuclear reactions is investigated by irradiating a 2 mm tantalum target with a 10 21 W cm-2 μm2 laser intensity into a 1 cm thick 107Pd target placed directly behind it. Based on the reported data by intense and well-collimated gamma photon beams generated by inexpensive inverse Compton scatterings of a 100 W CO2 laser and the 3.5 GeV high energy electron, a suitable theoretical formalism is presented. The scattered energy and the differential cross section are characterized as a function of scattering angle. It is found that the number of reactions in the... 

    Dissociative ionization of methane in an elliptical pulse shaped laser field

    , Article Journal of Molecular Structure ; Volume 1079 , January , 2015 , Pages 454-459 ; 00222860 (ISSN) Irani, E ; Sadighi Bonabi, R ; Anvari, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The effect of strong femto-second laser pulses on the dissociation probability of methane has been investigated analytically in various arrangements. The ellipticity dependence of the dissociation probability at intensities from 1014 W cm-2 to 1016 W cm-2 for Ti:Sapphire laser is presented. A reliable calculation of the dissociation probability based on 3D time-dependent Schrodinger equation with an improved model of time-dependent density-functional theory is presented. These calculations are carried out for three different cases of elliptically polarized laser pulse, optimum convolution of dual short pulses, and two-color mixed nonresonant laser pulses. It is found that the rescattering... 

    Flutter analysis of a nonlinear airfoil using stochastic approach

    , Article Nonlinear Dynamics ; Volume 84, Issue 3 , 2016 , Pages 1735-1746 ; 0924090X (ISSN) Irani, S ; Sazesh, S ; Molazadeh, V. R ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    In this paper, the dynamic instability of a nonlinear system has been studied using the stochastic vibration analysis and employing statistical properties of the system response. In this method neither the time domain analysis nor limit cycle oscillations were used. A two degrees-of-freedom airfoil subjected to an aerodynamic quasi-steady flow with a nonlinear torsional spring was considered as the case study. The spring nonlinearity was examined in hardening and softening states. A random force in the form of the white noise with Gaussian function was added to the aerodynamic lift force. The statistical linearization and random vibration analysis were applied to the nonlinear system to... 

    The effect of chirped intense femtosecond laser pulses on the argon cluster

    , Article Advances in High Energy Physics ; Volume 2016 , 2016 ; 16877357 (ISSN) Ghaforyan, H ; Sadighi Bonabi, R ; Irani, E ; Sharif University of Technology
    Hindawi Publishing Corporation  2016
    Abstract
    The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nanoplasma model. Based on the dynamic simulations, ionization process, heating, and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2 × 1017 Wcm-2 are studied. The analytical calculation provides ionization rate for different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach, the strong dependence of laser intensity, pulse duration, and laser shape on the electron energy, the electron density, and the cluster size is presented using the intense chirped laser pulses. Based on the presented... 

    Theoretical study of protic solvents hydrogen bonding effect, on the reaction of cyclopentadiene and vinyl acetate; apart from the bulk properties

    , Article Journal of Molecular Structure: THEOCHEM ; Volume 909, Issue 1-3 , 2009 , Pages 86-90 ; 01661280 (ISSN) Irani, M ; Haqgu, M ; Gholami, M. R ; Sharif University of Technology
    2009
    Abstract
    Ab initio, DFT, Monte Carlo statistical mechanics and atom in molecule methods have been applied to investigate the hydrogen bonding effect of protic solvents, apart from the bulk properties, on the reaction of cyclopentadiene and vinyl acetate. The results show that methanol accelerates the rate of the reaction more than water. DFT calculations demonstrate that the interaction of the carbonyl group oxygen atom with solvent molecules in transition state is stronger and more effective than the ether-type oxygen atom. Also, when the solvent molecule is near the oxygen of the carbonyl group the rate of reaction is larger than when it is near the ether-type oxygen. In addition, methanol... 

    Selective photo-dissociative ionization of methane molecule with TDDFT study

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 171 , 2017 , Pages 325-329 ; 13861425 (ISSN) Irani, E ; Anvari, A ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Three dimensional calculation of control dynamics for finding the optimized laser filed is formulated using an iterative method and time-dependent density functional approach. An appropriate laser pulse is designed to control the desired products in the dissociation of methane molecule. The tailored laser pulse profile, eigenstate distributions and evolution of the efficient occupation numbers are predicted and exact energy levels of this five-atomic molecule is obtained. Dissociation rates of up to 78%, 80%, 90%, and 82% for CH2 +, CH+, C+ and C++ are achieved. Based on the present approach one can reduce the controlling costs. © 2016 Elsevier B.V  

    A Study on the effects of thermodynamic nonideality and mass transfer on multi-phase hydrodynamics using CFD methods

    , Article World Academy of Science, Engineering and Technology ; Volume 58 , 2009 , Pages 627-632 ; 2010376X (ISSN) Irani, M ; Bozorgmehry Boozarjomehry, R ; Pishvaie, M. R ; Tavasoli, A ; Sharif University of Technology
    2009
    Abstract
    Considering non-ideal behavior of fluids and its effects on hydrodynamic and mass transfer in multiphase flow is very essential. Simulations were performed that takes into account the effects of mass transfer and mixture non-ideality on hydrodynamics reported by Irani et al. In this paper, by assuming the density of phases to be constant and Raullt's law instead of using EOS and fugacity coefficient definition, respectively for both the liquid and gas phases, the importance of non-ideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T=323 K, P =445 kpa) also indicated that the assumption of constant density in simulation had... 

    Theoretical study of protic solvents hydrogen bonding effect, on the reaction of cyclopentadiene and vinyl acetate; apart from the bulk properties

    , Article Journal of Molecular Structure: THEOCHEM ; Volume 909, Issues 1–3 , September , 2009 , Pages 86–90 Irani, M ; Haqgu, M ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    2009
    Abstract
    Ab initio, DFT, Monte Carlo statistical mechanics and atom in molecule methods have been applied to investigate the hydrogen bonding effect of protic solvents, apart from the bulk properties, on the reaction of cyclopentadiene and vinyl acetate. The results show that methanol accelerates the rate of the reaction more than water. DFT calculations demonstrate that the interaction of the carbonyl group oxygen atom with solvent molecules in transition state is stronger and more effective than the ether-type oxygen atom. Also, when the solvent molecule is near the oxygen of the carbonyl group the rate of reaction is larger than when it is near the ether-type oxygen. In addition, methanol... 

    A joint experimental and theoretical study of kinetic and mechanism of rearrangement of allyl p-tolyl ether

    , Article Journal of Molecular Structure: THEOCHEM ; Volume 893, Issue 1-3 , 2009 , Pages 73-76 ; 01661280 (ISSN) Irani, M ; Haqgu, M ; Talebi, A ; Gholami, M. R ; Sharif University of Technology
    2009
    Abstract
    A joint theoretical and experimental study of the kinetic and mechanism of the rearrangement of allyl p-tolyl ether was performed in order to study the kinetic and mechanism of the reaction. Experimental studies were performed in gas phase over a temperature range of 493.15-533.15 K. The experimental Arrhenius parameters of this reaction were measured to be Ea = 36.08 kcal mol-1, ΔS# = -7.88 cal mol-1 K-1, and Log A = 11.74, experimentally. Using GC for the mixture of the reaction with and without cyclohexene demonstrated that the reaction is clean without any radical intermediates. The experimental results show that the studied reaction is unimolecular and proceeds through a concerted... 

    Multielectron dissociative ionization of methane and formaldehyde molecules with optimally tailored intense femtosecond laser pulses

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 185 , 2017 , Pages 298-303 ; 13861425 (ISSN) Irani, E ; Anvari, A ; Sadighi Bonabi, R ; Monfared, M ; Sharif University of Technology
    2017
    Abstract
    The multielectron dissociative ionization of CH4 and CH2O molecules has been investigated using optimum convolution of different dual tailored short laser pulses. Based on three dimensional molecular dynamics simulations and TDDFT approach, the dissociation probability is enhanced by designing the dual chirped-chirped laser pulses and chirped-ordinary laser pulses for formaldehyde molecule. However, it is interesting to notice that the sensitivity of enhanced dissociation probability into different tailored laser pulses is not significant for methane molecule. In this presented modifications, time variation of bond length, velocity, time dependent electron localization function and evolution... 

    Molecular mechanism of glycosylated IL-1RII counteraction with IL-1RI in regulation of the immune response

    , Article Molecular Simulation ; Volume 49, Issue 16 , 2023 , Pages 1491-1501 ; 08927022 (ISSN) Jamshidi Khameneh, N ; Azimzadeh Irani, M ; Ejtehadi, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2023
    Abstract
    Interleukin-1 Receptor Type II (IL-1RII) is the decoy receptor of IL-1 cytokines. It down-regulates the immune signalling pathways. There is a competitive behaviour between the IL-1RII and IL-1RI, which is the signalling receptor of the IL-1Rs family. By adopting similarities in structure and specific shared ligands, the two receptors are competing regulators of the immune response. Conformational changes of IL-1RII is a crucial factor in its ligand binding and activation. In addition, dynamics and functionality of the receptor are known to be regulated by glycosylation. Herein, all-atom Molecular Dynamics (MD) simulations were carried out to investigate the dynamics of the apo and... 

    A density functional theory study of cyclization of citronellal

    , Article Reaction Kinetics and Mechanism ; Vol. 37, Number 2 , May , 2012 , pp. 173-182 Zardoost, M. R ; Gholami, M. R ; Irani, M ; Siadati, A ; Sharif University Of Technology
    2012
    Abstract
    A theoretical study of the kinetics and mechanism of the cyclization of citronellal in the gas phase was performed using density functional theory methods at the B3LYP level of theory with 6-311G, 6-311G*, 6-31G**, 6-311G**, 6-311 þ G and 6-311 þ þ G basis sets at 298.15 K, 433.15 K, and 473.15 K. Equilibrium molecular geometries and harmonic vibrational frequencies of the reactant, transition state and products were calculated. Rate constants and activation thermodynamic parameters were calculated and showed a fairly good agreement with experimental results. The effect of solvent polarity on the reaction was studied. These calculations indicated that the reaction proceeds through an... 

    Laser-induced photo transmutation of 126Sn - A hazardous nuclear waste product-into short-lived nuclear medicine of 125Sn

    , Article Energy Conversion and Management ; Volume 64 , 2012 , Pages 466-472 ; 01968904 (ISSN) Irani, E ; Sadighi, S. K ; Zare, S ; Sadighi Bonabi, R ; Sharif University of Technology
    2012
    Abstract
    Relativistic electrons, generated in the interaction of an ultra-intense laser pulse with plasma in front of a high-Z solid target, when passing near the nuclei of the solid target produce several MeV highly collimated Bremsstrahlung gamma beam, which can be used to induce photo-nuclear reactions. In this work the possibility of photo-induced transmutation (γn) of a nuclear waste of 126Sn with a half-life of 100,000 years into 125Sn with a half-life of 9.64 days was investigated for the first time. Calculations based on the available experimental data show that the Bremsstrahlung γ beam generated by irradiating a 2 mm thick tantalum target as a converter with 1020Wcm-2μm2 and 10 Hz table-top...