Loading...
Search for: jafari-talookolaei--ramazan-ali
0.112 seconds

    Dynamic Modeling and Analysis of Delaminated Isotropic and Multi- Layered Composite Beam under the Action of Moving Force/Oscillatory Mass

    , Ph.D. Dissertation Sharif University of Technology Jafari Talookolaei, Ramazan Ali (Author) ; Kargarnovin, Mohammad Hossein (Supervisor) ; Ahmadian, Mohammad Taghi (Co-Advisor)
    Abstract
    In this thesis, a laminated composite beam with single delamination under the action of moving force/oscillatory mass has been modeled and analyzed. The beam has been divided into four sub-beams and based on Bernoulli-Euler and also shear deformation theories and by applying the Hamilton’s principle, equations of motion along with boundary conditions and continuity and compatibility conditions are obtained. Primarily, based on the constrained mode model the delaminated layers have been analyzed then by implementing the Lagrange multipliers method, the nature of dynamic contact is incorporated. In the analysis of delaminated beam based on the constrained mode, by applying the mode summation... 

    Analytical solution for the free vibration analysis of delaminated timoshenko beams

    , Article The Scientific World Journal ; Volume 2014 , 2014 ; ISSN: 1537744X Jafari Talookolaei, R. A ; Abedi, M ; Sharif University of Technology
    2014
    Abstract
    This work presents a method to find the exact solutions for the free vibration analysis of a delaminated beam based on the Timoshenko type with different boundary conditions. The solutions are obtained by the method of Lagrange multipliers in which the free vibration problem is posed as a constrained variational problem. The Legendre orthogonal polynomials are used as the beam eigenfunctions. Natural frequencies and mode shapes of various Timoshenko beams are presented to demonstrate the efficiency of the methodology  

    Analysis of large amplitude free vibrations of unsymmetrically laminated composite beams on a nonlinear elastic foundation

    , Article Acta Mechanica ; Volume 219, Issue 1-2 , January , 2011 , Pages 65-75 ; 00015970 (ISSN) Jafari Talookolaei, R. A ; Salarieh, H ; Kargarnovin, M. H ; Sharif University of Technology
    2011
    Abstract
    The large amplitude free vibration of an unsymmetrically laminated composite beam (LCB) on a nonlinear elastic foundation subjected to axial load has been studied. The equation of motion for the axial and transverse deformations of a geometrically nonlinear LCB is derived. Using the Ritz method, the governing equation is reduced to a time-dependent Duffing equation with quadratic and cubic nonlinearities. The homotopy analysis method (HAM) is used to obtain exact expressions for the dynamic response of the LCB. This study shows that the third-order approximation of the HAM leads to highly accurate solutions that are valid for a wide range of vibration amplitudes. The effects of different... 

    Analytical solution for the dynamic analysis of a delaminated composite beam traversed by a moving constant force

    , Article JVC/Journal of Vibration and Control ; Volume 19, Issue 10 , March , 2013 , Pages 1524-1537 ; 10775463 (ISSN) Kargarnovin, M. H ; Ahmadian, M. T ; Jafari Talookolaei, R. A ; Sharif University of Technology
    2013
    Abstract
    A closed form solution is presented in this paper to study the dynamics of a composite beam with a single delamination under the action of a moving constant force. The delaminated beam is divided into four interconnected beams using the delamination limits as their boundaries. Governing motion equations are derived in which the differential stretching and the bending-extension coupling are considered. The method of modal analysis is adopted to derive analytically the dynamic response of each beam. The obtained results for the free vibrations of delaminated beam are verified against reported similar results in the literature. Moreover, the maximum dynamic response of such a beam is compared... 

    On the dynamic response of a delaminated composite beam under the motion of an oscillating mass

    , Article Journal of Composite Materials ; Volume 46, Issue 22 , 2012 , Pages 2863-2877 ; 00219983 (ISSN) Jafari Talookolaei, R. A ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    SAGE  2012
    Abstract
    The dynamic response of a delaminated composite beam under the motion of an oscillatory mass moving with a constant velocity has been studied. The delaminated composite beam is modeled as four interconnected sub-beams using the delamination limits as their boundaries. The constrained model is used to model the delamination region. The continuity and equilibrium conditions are forced to be satisfied between the adjoining beams. A set of derived governing differential equations along with those obtained by imposing boundary conditions are simultaneously solved in a closed form manner. The results for the response of the delaminated beam were compared with those of the intact beam. Furthermore,... 

    Forced vibration of delaminated timoshenko beams under the action of moving oscillatory mass

    , Article Shock and Vibration ; Volume 20, Issue 1 , 2013 , Pages 79-96 ; 10709622 (ISSN) Kargarnovin, M. H ; Ahmadian, M. T ; Jafari Talookolaei, R. A ; Sharif University of Technology
    2013
    Abstract
    This paper presents the dynamic response of a delaminated composite beam under the action of a moving oscillating mass. In this analysis the Poisson's effect is considered for the first time. Moreover, the effects of rotary inertia and shear deformation are incorporated. In our modeling linear springs are used between delaminated surfaces to simulate the dynamic interaction between sub-beams. To solve the governing differential equations of motion using modal expansion series, eigen-solution technique is used to obtain the natural frequencies and their corresponding mode shapes necessary for forced vibration analysis. The obtained results for the free and forced vibrations of beams are... 

    Dynamics of a delaminated timoshenko beam subjected to a moving oscillatory mass

    , Article Mechanics Based Design of Structures and Machines ; Volume 40, Issue 2 , Apr , 2012 , Pages 218-240 ; 15397734 (ISSN) Kargarnovin, M. H ; Ahmadian, M. T ; Jafari-Talookolaei, R. A ; Sharif University of Technology
    2012
    Abstract
    This paper presents dynamic response of a delaminated composite beam under the action of moving oscillatory mass. The Poisson's effect, shear deformation and rotary inertia have been considered in this analysis. We have used the constrained mode model to simulate the behavior between the delaminated surfaces. Based on this model, eigen-solution technique is used to obtain the natural frequencies and their corresponding mode shapes for the delaminated beam. Then, the forced response is determined by employing the modal series expansion technique. The obtained results for the free and forced vibrations of beams are verified against reported similar results in the literature. Moreover, the... 

    Dynamic response of a delaminated composite beam with general lay-ups based on the first-order shear deformation theory

    , Article Composites Part B: Engineering ; Volume 55 , 2013 , Pages 65-78 ; 13598368 (ISSN) Jafari Talookolaei, R. A ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    The dynamic response analysis of a delaminated composite beam with a general lay-up traversed under an arbitrary moving/non-moving force is presented. By employing the energy method and introducing a new finite element, the global mass and stiffness matrices for a Laminated Composite Beam (LCB) of Timoshenko type are derived in which the material couplings (bending-tension, bending-twist, and tension-twist couplings) with the Poisson's effect are considered. In deriving the governing equation the non-penetration condition is imposed by employing the method of Lagrange multipliers. Out of a self-developed finite element program, the natural frequencies and time response of such LCB are... 

    Dynamic analysis of a delaminated composite beam due to a moving oscillatory mass

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011 ; Volume 7, Issue PARTS A AND B , November , 2011 , Pages 863-870 ; 9780791854938 (ISBN) Ahmadian, M. T ; Kargarnovin, M. H ; Jafari Talookolaei, R. A ; Sharif University of Technology
    2011
    Abstract
    This paper deals with the dynamic analysis of a delaminated composite beam under the action of moving oscillatory mass. The beam is analyzed as four interconnected sub-beams using the delamination limits as their boundaries. The constrained model is used to model the delamination region. The continuity and equilibrium conditions are satisfied between the adjoining beams. The beam response variation due to the delamination with respect to the intact beam has been investigated. Furthermore, the possible separation of the moving oscillator from the beam during the course of the motion is investigated by monitoring the contact force between the oscillator and the beam. The effect of the... 

    Free vibration analysis of cross-ply layered composite beams with finite length on elastic foundation

    , Article International Journal of Computational Methods ; Volume 5, Issue 1 , 2008 , Pages 21-36 ; 02198762 (ISSN) Jafari Talookolaei, R. A ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    2008
    Abstract
    In this paper, free vibration analysis of cross-ply layered composite beams (LCB) with finite length and rectangular cross-section rested on an elastic foundation is investigated by finite element method. Based on the Timoshenko beam theory which includes the shear deformation and rotary inertia, the stiffness and mass matrices of a LCB are obtained using the energy method. Then, the natural frequencies are calculated by employing eigenvalue technique. The obtained results are verified against existing data in the literatures for a LCB with no foundation and uniform cross-section. Good agreements are observed between these cases. In the same way, the natural frequencies of a specific case,... 

    An analytical approach for the free vibration analysis of generally laminated composite beams with shear effect and rotary inertia

    , Article International Journal of Mechanical Sciences ; Volume 65, Issue 1 , December , 2012 , Pages 97-104 ; 00207403 (ISSN) Jafari Talookolaei, R. A ; Abedi, M ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this paper, the free vibration analysis of generally laminated composite beam (LCB) based on Timoshenko beam theory are presented using the method of Lagrange multipliers where in the free vibration problem is posed as a constrained variational problem. The effect of material couplings (bending-tension, bending-twist, and tension-twist couplings) with the effects of shear deformation, rotary inertia and Poisson's effect are taken into account. Analytical expression for the natural frequencies and mode shapes are presented. The calculated natural frequencies are verified against some available results in the literature and very good agreement is observed. Furthermore, the effects of some... 

    Semi-analytical solution for the free vibration analysis of generally laminated composite Timoshenko beams with single delamination

    , Article Composites Part B: Engineering ; Volume 45, Issue 1 , 2013 , Pages 587-600 ; 13598368 (ISSN) Kargarnovin, M. H ; Ahmadian, M. T ; Jafari Talookolaei, R. A ; Abedi, M ; Sharif University of Technology
    2013
    Abstract
    A rather new semi-analytical method towards investigating the free vibration analysis of generally laminated composite beam (LCB) with a delamination is presented. For the first time the combined effects of material couplings (bending-tension, bending-twist, and tension-twist couplings) with the effects of shear deformation, rotary inertia and Poisson's effect are taken into account. The semi-analytical solution for the natural frequencies and mode shapes are presented by incorporating the constraint conditions using the method of Lagrange multipliers. To verify the validity and the accuracy of the obtained results, they were compared with the results from other available references. Very... 

    An investigation on the nonlinear free vibration analysis of beams with simply supported boundary conditions using four engineering theories

    , Article Journal of Applied Mathematics ; Volume 2011 , 2011 ; 1110757X (ISSN) Jafari Talookolaei, R. A ; Kargarnovin, M. H ; Ahmadian, M. T ; Abedi, M ; Sharif University of Technology
    2011
    Abstract
    The objective of this study is to present a brief survey on the geometrically nonlinear free vibrations of the Bernoulli-Euler, the Rayleigh, shear, and the Timoshenko beams with simple end conditions using the Homotopy Analysis Method (HAM). Expressions for the natural frequencies, the transverse deflection, postbuckling load-deflection relation to, and critical buckling load are presented. The results of nonlinear analysis are validated with the published results, and excellent agreement is observed. The effects of some parameters, such as slender ratio, the rotary inertia, and the shear deformation, are examined as other parameters are fixed. Copyright  

    Dynamic analysis of generally laminated composite beam with a delamination based on a higher-order shear deformable theory

    , Article Journal of Composite Materials ; Volume 49, Issue 2 , 2015 , Pages 141-162 ; 00219983 (ISSN) Jafari Talookolaei, R. A ; Abedi, M ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this study, the dynamic response of the laminated composite beam with arbitrary lay-ups has been investigated within the framework of the third-order shear deformation theory using the finite element method. A new three-nodded finite element compliant with the theory is introduced next. To deal with the dynamic contact between the delaminated segments, unilateral contact constraints are employed in conjunction with Lagrange multiplier method. Furthermore, the Poisson's effect is incorporated in the formulation of the beam constitutive equation. Also, the higher-order inertia effects and material couplings (flexure-tensile, flexure-twist and tensile-twist couplings) are considered in the... 

    Dynamics of a generally layered composite beam with single delamination based on the shear deformation theory

    , Article Science and Engineering of Composite Materials ; Volume 22, Issue 1 , 2015 , Pages 57-70 ; 0334181X (ISSN) Jafari Talookolaei, R. A ; Abedi, M ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    Walter de Gruyter GmbH  2015
    Abstract
    The free vibration analysis of generally laminated composite beam (LCB) with a delamination is presented using the finite element method (FEM). The effect of material couplings (bending-tension, bending-twist, and tension-twist couplings) with the effects of shear deformation, rotary inertia, and Poisson's effect are taken into account. To verify the validity and the accuracy of this study, the numerical solutions are presented and compared with the results from available references and very good agreement observed. Furthermore, the effects of some parameters such as slenderness ratio, the rotary inertia, the shear deformation, material anisotropy, ply configuration, and delamination... 

    Dynamic response of a delaminated beam due to a moving force

    , Article International Conference on Noise and Vibration Engineering 2012, ISMA 2012, including USD 2012: International Conference on Uncertainty in Structure Dynamics, 17 September 2012 through 19 September 2012 ; Volume 4 , September , 2012 , Pages 3189-3200 ; 9781622768257 (ISBN) Jafari Talookolaei, R.A ; Kargarnovin, M. H ; Ahmadian, M. T ; Abedi, M ; Katholieke Universiteit Leuven ; Sharif University of Technology
    Katholieke Universiteit Leuven  2012
    Abstract
    This paper deals with the dynamic analysis of a delaminated Bernoulli-Euler beam with constrained model under the action of an external moving force. The beam is analyzed as four interconnected sub-beams using the delamination as their boundaries. The continuity and compatibility conditions are satisfied between adjoining beams. An analytical solution is presented in a basis of the series expansion of the unknown deflection. The delaminated beam response differences with the healthy beam have been investigated. Effect of the parameters like the moving speed of the force and the size, depth and spanwise location of the delamination on the dynamic response of the beam has been studied.... 

    Investigating the Rank Effect in the Trading Behavior of Iranian Mutual Funds

    , M.Sc. Thesis Sharif University of Technology Jafari, Ehsan (Author) ; Ebrahimnejad, Ali (Supervisor)
    Abstract
    The rank effect means that investors are more likely to sell the best or worst positions in their portfolio in terms of returns. According to this effect, the probability of selling a stock in a prominent position (first or last) is higher than other stocks in the portfolio. Apart from being a behavioral bias, the rank effect is that the decision to sell a stock depends on how it is compared and ranked with the rest of the portfolio. In this study, we examine the rank effect on the trading behavior of Iranian mutual funds for the period 1390-1399 and find that it is significant. First in a statistical and univariate form, and then by including other variables such as firm-specific... 

    Optimization of Full Composite Body of the Scaled Jas39 Fighter Aircraft Model Using Genetic Algorithm

    , M.Sc. Thesis Sharif University of Technology Jafari, Mohammad Amin (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Popular usage of composite materials in aerospace, civil and defense industries in the last decades has been the cause for paying more attention to optimization of composites tailoring. Due to inherent complexity of composite problems, i.e. discrete nature, complex interrelationship of design variables, existence of so many local optimum points, and etc., gradient base methods of optimization are found to be incapable and as a result using other powerful methods seems inevitable. Nowadays Genetic algorithm (GA) as an evolutionary technique is used for tackling composite problems. The success of a genetic algorithm can be quantified by estimating the cost, time required and the quality of... 

    Document Biped hopping control bazsed on spring loaded inverted pendulum model [electronic resource]

    , Article Int. Journal of Humanoid Robotics ; Vol. 7, No. 2, pp. 263-280, 2010 Tamaddoni, H. (Hossein) ; Jafari, Farid ; Meghdari, Ali ; Sohrabpour, Saeed ; Sharif University of Technology
    Abstract
    Human running can be stabilized in a wide range of speeds by automatically adjusting muscular properties of leg and torso. It is known that fast locomotion dynamics can be approximated by a spring loaded inverted pendulum (SLIP) system, in which leg is replaced by a single spring connecting body mass to ground. Taking advantage of the inherent stability of SLIP model, a hybrid control strategy is developed that guarantees a stable biped locomotion in sagittal plane. In the presented approach, nonlinear control methods are applied to synchronize the biped dynamics and the spring-mass dynamics. As the biped center of mass follows the mass of the mass-spring model, the whole biped performs a... 

    Analysis of Entanglement in Ladder Lattices

    , M.Sc. Thesis Sharif University of Technology Asgharpour, Ali (Author) ; Jafari, Akbar (Supervisor) ; Rezakhani, Ali (Supervisor)
    Abstract
    Since concepts in quantum information theory has recently been applied to characterize states in many-body systems, we survey entanglement of the ground states in the S = 1/2 antiferromagnetic Heisenberg ladder systems and 2D square lattices. The Lancz¨os method for exact diagonalization of quantum spin models are used to find the ground states. Moreover, effect of defect in ladder on entanglement and ground state energy are studied