Loading...
Search for: jafarinezhad--o
0.088 seconds

    Towards a process factory for developing situational requirements engineering processes

    , Article Proceedings of the ACM Symposium on Applied Computing, 26 March 2012 through 30 March 2012 ; March , 2012 , Pages 1089-1090 ; 9781450308571 (ISBN) Jafarinezhad, O ; Ramsin, R ; Sharif University of Technology
    2012
    Abstract
    Selecting a suitable Requirements Engineering (RE) process is usually based on personal preferences or existing company practices rather than on the characteristics of the project at hand (project situation). Feature-oriented software development is the overall process of developing software systems in terms of their features. The Software Product Line (SPL) approach is a paradigm for systematic reuse of software products, and a Software Factory is a SPL aimed at the industrialization of software development. Based on the notion that a software/RE process can be developed via an engineering process, this research aims to provide a feature-based RE process factory to develop RE processes... 

    Development of situational requirements engineering processes: A process factory approach

    , Article Proceedings - International Computer Software and Applications Conference ; 2012 , Pages 279-288 ; 07303157 (ISSN) ; 9780769547367 (ISBN) Jafarinezhad, O ; Ramsin, R ; Sharif University of Technology
    2012
    Abstract
    The Software Product Line (SPL) approach is a paradigm for systematic reuse of software products, and a Software Factory is a SPL aimed at the industrialization of software development. Based on the notion that a software/RE process can be developed via an engineering process (much akin to engineering other types of software), this research aims to provide a feature-based RE process factory to develop RE processes based on the characteristics of the project at hand (project situation). In our approach, the project situation is modeled as the problem domain through using the i* modeling language (resulting in a situation model). A feature model can encapsulate all the features in an SPL;... 

    A Framework for Requirements Engineering in Situational Method Engineering

    , M.Sc. Thesis Sharif University of Technology Jafarinezhad, Omid (Author) ; Ramsin, Raman (Supervisor)
    Abstract
    Practitioners and researchers working on Software Development Methodologies (SDM) have always sought for ways to raise the degree of flexibility in SDMs, so that methodologies can be adjusted to specific project situations. Methodology Engineering (ME) approaches are being pursued to this aim, giving rise to Situational Method Engineering (SME). As the pivotal phase of software development, Requirements Engineering (RE) has proved essential in SME; however, SME has a long way to go as to its support for specialized RE practices. The RE practices employed in software engineering seem to provide a rich resource for strategies and techniques that can address this issue, if properly attuned to... 

    Unlocking the power of ehrs: harnessing unstructured data for machine learning-based outcome predictions

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2023 ; 1557170X (ISSN); 979-835032447-1 (ISBN) Noaeen, M ; Amini, S ; Bhasker, S ; Ghezelsefli, Z ; Ahmed, A ; Jafarinezhad, O ; Shakeri Hossein Abad, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2023
    Abstract
    The integration of Electronic Health Records (EHRs) with Machine Learning (ML) models has become imperative in examining patient outcomes due to the vast amounts of clinical data they provide. However, critical information regarding social and behavioral factors that affect health, such as social isolation, stress, and mental health complexities, is often recorded in unstructured clinical notes, hindering its accessibility. This has resulted in an over-reliance on clinical data in current EHR-based research, potentially leading to disparities in health outcomes. This study aims to evaluate the impact of incorporating patient-specific context from unstructured EHR data on the accuracy and... 

    Simulating dynamic plastic continuous neural networks by finite elements

    , Article IEEE Transactions on Neural Networks and Learning Systems ; Volume 25, Issue 8 , August , 2014 , Pages 1583-1587 ; ISSN: 2162237X Joghataie, A ; Torghabehi, O. O ; Sharif University of Technology
    2014
    Abstract
    We introduce dynamic plastic continuous neural network (DPCNN), which is comprised of neurons distributed in a nonlinear plastic medium where wire-like connections of neural networks are replaced with the continuous medium. We use finite element method to model the dynamic phenomenon of information processing within the DPCNNs. During the training, instead of weights, the properties of the continuous material at its different locations and some properties of neurons are modified. Input and output can be vectors and/or continuous functions over lines and/or areas. Delay and feedback from neurons to themselves and from outputs occur in the DPCNNs. We model a simple form of the DPCNN where the... 

    A Deep Learning Approach for Detecting Covid-19 Using the Chest X-Ray Images

    , Article Computers, Materials and Continua ; Volume 74, Issue 1 , 2023 , Pages 751-768 ; 15462218 (ISSN) Sadeghi, F ; Rostami, O ; Yi, M. K ; Hwang, S. O ; Sharif University of Technology
    Tech Science Press  2023
    Abstract
    Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now. In the meantime, airspace opacities spreads related to lung have been of the most challenging problems in this area. A common approach to do on that score has been using chest X-ray images to better diagnose positive Covid-19 cases. Similar to most other classification problems, machine learning-based approaches have been the first/most-used candidates in this application. Many schemes based on machine/deep learning have been proposed in recent years though increasing the performance and accuracy of the system has still remained an... 

    Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria

    , Article Journal of Alloys and Compounds ; Vol. 590 , 2014 , pp. 507-513 ; ISSN: 09258388 Zirak, M ; Akhavan, O ; Moradlou, O ; Nien, Y. T ; Moshfegh, A. Z ; Sharif University of Technology
    2014
    Abstract
    Vertically aligned ZnO@CdS nanorod heterostructure films with various loadings of CdS nanoparticle shell were synthesized and applied in photoinactivation of Escherichia coli bacteria under visible light irradiation. While neither the bare ZnO nanorods (with band-gap energy (Eg) of ∼3.28 eV) under visible light irradiation nor the nanorod heterostructures in dark exhibited any significant antibacterial activity, the ZnO@CdS nanorod heterostructures (with Eg ∼2.5-2.6 eV) could successfully inactivate the bacteria under visible light irradiation. Furthermore, it was found that an optimum loading of the CdS shell (corresponding to the effective thickness less than ∼15 nm) is required to achieve... 

    Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy

    , Article Journal of Materials Processing Technology ; Volume 262 , 2018 , Pages 239-256 ; 09240136 (ISSN) Rouzbehani, R ; Kokabi, A. H ; Sabet, H ; Paidar, M ; Ojo, O. O ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Travel speeds between 25–300 mm/min and tool rotational speeds of 800 and 1250 rpm were employed for this study. The microstructure, mechanical properties and fracture surfaces of the joints were studied. Underwater environment and an increase in travel speed significantly increase the precipitates’ volume fraction, reduce the average grain and precipitate sizes of the weld nugget zones. A critical travel speed of 150 mm/min is attained in underwater welds beyond which the average grain sizes remain relatively the same. Average grain and precipitate sizes have linear relationships with the tool rotational and travel speed ratio. Optimum weld strengths of 396 and 360 MPa were obtained in the... 

    Pre-threaded hole friction stir spot welding of AA2219/PP-C30S sheets

    , Article Journal of Materials Processing Technology ; Volume 273 , 2019 ; 09240136 (ISSN) Paidar, M ; Ojo, O. O ; Moghanian, A ; Karami Pabandi, H ; Elsa, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper examines the use of pre-fabricated interlocking arms/threading in enhancing the strength of friction stir spot welded hybrid joints of AA2219/PP-C30S polypropylene polymer by varying parameter combination. The process involves the fabrication of a pre-threaded hole on the Al alloy prior to the joining process, and the threading/crest-pitch profile aids mechanical interlocking. The peak temperature, crest-pitch interlocked profiles, microstructural and mechanical properties of the joints were examined. The results show that an increase in the tool rotational speed increases the thickness of the reaction layer (between the Al and the polymer substrates), the shear-tensile load... 

    Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation [electronic resource]

    , Article Journal of Applied Surface Science ; 15 May 2014, Volume 301, Pages 456–462 Mazaheri, M ; Akhavan, O ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured... 

    Superparamagnetic zinc ferrite spinel-graphene nanostructures for fast wastewater purification

    , Article Carbon ; Vol. 69 , April , 2014 , pp. 230-238 ; ISSN: 00086223 Meidanchi, A ; Akhavan, O ; Sharif University of Technology
    2014
    Abstract
    Superparamagnetic ZnFe2O4/reduced graphene oxide (rGO) composites containing ZnFe2O4 nanoparticles (with ∼5-20 nm sizes) attached onto rGO sheets (with ∼1 μm lateral dimensions) were synthesized by hydrothermal reaction method. By increasing the graphene content of the composite from 0 to 40 wt%, the size as well as the number of the ZnFe2O4 nanoparticles decreased and the saturated magnetization of the composites reduced from 10.2 to 1.8 emu/g, resulting in lower responses to external magnetic fields. Concerning this, the time needed for 90% separation of ZnFe2O4/rGO (40 wt%) composite from its solution (2 mg/mL in ethanol) was found 60 min in the presence of an external magnetic field (∼1... 

    Visible light-induced photocatalytic reduction of graphene oxide by tungsten oxide thin films

    , Article Applied Surface Science ; Volume 276 , 2013 , Pages 628-634 ; 01694332 (ISSN) Choobtashani, M ; Akhavan, O ; Sharif University of Technology
    2013
    Abstract
    Tungsten oxide thin films (deposited by thermal evaporation or sol gel method) were used for photocatalytic reduction of graphene oxide (GO) platelets (synthesized through a chemical exfoliation method) on surface of the films under UV or visible light of the environment, in the absence of any aqueous ambient at room temperature. Atomic force microscopy (AFM) technique was employed to characterize surface morphology of the GO sheets and the tungsten oxide films. Moreover, using X-ray photoelectron spectroscopy (XPS), chemical state of the tungsten oxide films and the photocatalytic reduction of the GO platelets were quantitatively investigated. The better performance of the sol-gel tungsten... 

    Ethylbenzene dehydrogenation to styrene over fresh and used commercial catalysts

    , Article AIChE Annual Meeting, Conference Proceedings ; 2011 ; 9780816910670 (ISBN) Baghalha, M ; Ebrahimpour, O ; Sharif University of Technology
    2011
    Abstract
    Dehydrogenation of ethylbenzene (EB) to produce styrene (ST) monomer is commercially performed over potassium-promoted iron oxide catalysts. Catalyst deactivation due to coke deposition and loss of potassium is a major operation and economic drawback in this process. To better evaluate the performance change of these catalysts over their life-cycle, dehydrogenation of EB to ST over the fresh and used commercial catalysts was experimentally investigated at temperatures from 590 to 639°C under atmospheric pressure. The fresh and the used catalysts were obtained from a styrene plant. The used catalyst had been continuously operated for two years under severe plant conditions. The catalyst... 

    Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation

    , Article Applied Surface Science ; Volume 371 , 2016 , Pages 592-595 ; 01694332 (ISSN) Rokhsat, E ; Akhavan, O ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Graphene oxide (GO) sheets with a low concentration (∼1 wt%) were deposited on surface of hydrothermally synthesized ZnO nanorod films. The deposited films were heat treated at 450 °C in order to achieve suitable GO/ZnO hybrid thin films for photocatalytic purposes. The photocatalytic activity of the nanocomposite films was investigated based on degradation of methylene blue (MB) dye which is a typical pollutant model. The GO/ZnO hybrid thin films could degrade higher MB (∼90%) than the bare ZnO nanorods (which showed only ∼75% degradation) after 450 min UV irradiation. A further significant improvement (resulting in a nearly complete degradation of MB) was achieved by exposing the GO/ZnO... 

    Roles of surface coverage increase and re-peening on properties of AISI 1045 carbon steel in conventional and severe shot peening processes

    , Article Surfaces and Interfaces ; Volume 11 , 2018 , Pages 82-90 ; 24680230 (ISSN) Maleki, E ; Unal, O ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Surface coverage as one of the most effective parameters of shot peening process has substantial influence on the functionality of the peened component. The aim of this study is to investigate the effects of surface coverage increase on the properties of treated specimens experimentally before and after re-shot peening. Different shot peening treatments from conventional to severe; were performed on the AISI 1045 steel. Microstructural observations and XRD measurements were applied to characterize the circumstance of microstructure changes. In order to investigate the mechanical properties, microhardness profiles were achieved, surface roughness was evaluated and the residual stresses... 

    Ultrahigh permeable C2N-inspired graphene nanomesh membranes versus highly strained c2n for reverse osmosis desalination

    , Article Journal of Physical Chemistry B ; Volume 123, Issue 41 , 2019 , Pages 8740-8752 ; 15206106 (ISSN) Fakhraee, M ; Akhavan, O ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    The reverse osmosis (RO) desalination capability of hydrogenated and hydroxylated graphene nanomesh membranes (GNMs) inspired by the morphology of carbon nitride (C2N) has been studied by using molecular dynamics simulation. As an advantage, water permeance of the GNMs is found to be several orders of magnitude higher than that of the available RO filters and comparable with highly strained C2N (S-C2N) as follows: 6,6-H,OH > 12-H > S-C2N > 5,5-H,OH > 10-H. The reverse order is found for salt rejection, regardless of S-C2N. The hydrophilic character of the incorporated -OH functional group is believed to be responsible for linking the water molecules in feed and permeate sides via the... 

    Laminar forced convection simulation at different boundary conditions with averaging scheme (numerical and theoretical research)

    , Article Mathematical Modelling of Engineering Problems ; Volume 6, Issue 4 , 2019 , Pages 519-526 ; 23690739 (ISSN) Adibi, T ; Adibi, O ; Sharif University of Technology
    International Information and Engineering Technology Association  2019
    Abstract
    In this paper, cavity flow is simulated numerically. Forced convection in different Reynolds numbers between 100 and 5000 is simulated. Different and complex thermal boundary conditions are applied and various parameters are calculated numerically. Up and down walls are in constant temperature and left and right walls are thermal insulation in the first thermal boundary condition. The Left and the down walls are in constant temperature and the temperature of the up and the right walls changes linearly in the second thermal boundary condition. For the third thermal boundary condition, the left and the down walls are in constant temperature and the temperature of the up and the right walls... 

    On the way of policy making to reduce the reliance of fossil fuels: Case study of Iran

    , Article Sustainability (Switzerland) ; Volume 12, Issue 24 , 2020 , Pages 1-28 Aien, M ; Mahdavi, O ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Nowadays, fossil fuels are well known as a predominant source of energy in the planet. Located in the Middle East region, Iran holds one of the largest fossil fuel reservoirs in the world. The country has abundant oil and natural gas fields in various regions; some of them are shared between other countries and have not reached their operational capacity yet. Meanwhile, during recent years and due to global warming followed by environmental global contracts such as Kyoto protocol, using fossil fuels is being criticized to a large extent around the world. Therefore, the global interest has been focused toward clean energy resources. Furthermore, endowed with sundry geographical pattern... 

    Optimization of shot peening effective parameters on surface hardness improvement

    , Article Metals and Materials International ; June , 2020 Maleki, E ; Unal, O ; Sharif University of Technology
    Korean Institute of Metals and Materials  2020
    Abstract
    Abstract: Shot peening is well-known process for mechanical properties integrity in metallic materials. In present study influences of different shot peening treatments on the surface hardness of different carbon steels were investigated experimentally and then alternative approach by using artificial neural network is presented for hardness prediction of the shot peened surface. After modeling a comprehensive parametric investigations and sensitivity analysis were applied according to the influence of the related effective parameters on surface hardness improvements. Graphic Abstract: [Figure not available: see fulltext.] © 2020, The Korean Institute of Metals and Materials  

    Fatigue limit prediction and analysis of nano-structured AISI 304 steel by severe shot peening via ANN

    , Article Engineering with Computers ; February , 2020 Maleki, E ; Unal, O ; Sharif University of Technology
    Springer  2020
    Abstract
    AISI 304 stainless steel is very widely used for industrial applications due to its good integrated performance and corrosion resistance. However, shot peening (SP) is known as one of the effectual surface treatments processes to provide superior properties in metallic materials. In the present study, a comprehensive study on SP of AISI 304 steel including 42 different SP treatments with a wide range of Almen intensities of 14–36 A and various coverage of 100–2000% was carried out. Varieties of experiments were accomplished for the investigation of the microstructure, grain size, surface topography, hardness and residual stresses as well as axial fatigue behavior. After experimental...