Loading...
Search for:
jamal-anaraki--maryam
0.151 seconds
Total 152 records
Synthesis and Investigation of Tribological Properties of Rubber-Based Friction Materials with low Friction Coefficient
, M.Sc. Thesis Sharif University of Technology ; Shojaei, Akbar (Supervisor)
Abstract
Nowadays, replacement of traditional cast iron shoes with composite brake blocks is a main project in railway systems. The main purpose of this replacement is noise reduction( for example by about 10dB for a 100km/h freight train). One of the main sources of noise emission is the rolling sound of the wheel on the rail. The rougher and more out-of-round wheel surface, the greater the noise produced. Cast iron brake shoes, still widely used on freight wagons, make the wheel surface much rougher than composite brake blocks due to the fusing of minute metal particles into the tread surface during braking. It is therefore necessary to replace the current cast iron brake shoe with a synthetic...
Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic fields
, Article Physical Review D - Particles, Fields, Gravitation and Cosmology ; Volume 78, Issue 12 , 2008 ; 15507998 (ISSN) ; Sohrabi Anaraki, K ; Sharif University of Technology
2008
Abstract
Using the general structure of the vacuum polarization tensor Πμν(k0,k) in the infrared (IR) limit, k0→0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k0→0, k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for α→0, the improved ring potential consists of a term proportional to T4α5/2, in addition to the expected T4α3/2 term arising from the static limit. Here, α is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau...
QED Ring Diagrams in Background Magnetic Field at Finite Temperature
, M.Sc. Thesis Sharif University of Technology ; Sadooghi, Neda (Supervisor)
Abstract
Using the general structure of the vacuum polarization tensor П_μν (k_0→0,k) in the infrared (IR) limit, k_0→0 , the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k_0→0,k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit and at high temperature the improved ring potential consists of a term proportional to T^4 α^(5/2), in addition to the expected term T^4 α^(3/2) arising from the static limit. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a...
Modeling of high temperature rheological behavior of AZ61 Mg-alloy using inverse method and ANN
, Article Materials and Design ; Volume 29, Issue 9 , 2008 , Pages 1701-1706 ; 02641275 (ISSN) ; Sanjari, M ; Akbarzadeh, A ; Sharif University of Technology
2008
Abstract
Inverse method and artificial neural network were employed in modeling the rheological behavior of the AZ61 Mg alloy. The hot deformation behavior of these alloys was investigated by compression tests in the temperature range 250-350 °C and strain rate range 0.0005-0.1 s-1. Investigation of stress-strain curves and microstructure of the compression specimen illustrate occurrence of dynamic recrystallization. To determining parameters of two suggested constitutive equations global optimization technique, genetic algorithm, was used. The predicted results by inverse method and ANN depicted a good agreement with the experimental data even if the ANN results has shown the best predicted...
3d Design of a Microfluidic Chip for Anticancer Drugs Screening
, M.Sc. Thesis Sharif University of Technology ; Mashayekhan, Shohreh (Supervisor) ; Saadatmand, Maryam (Supervisor)
Abstract
Nowadays, advanced and inexpensive pre-clinical methods for investigating the effects of anti-cancer drugs are expanding. One of the latest three-dimensional laboratory modeling for evaluating the effects of drugs is the use of tumor-on-chip technology, which actually models the physiological system of the body through three-dimensional scaffolds, multicellular cultures, and shaped vascular systems. In this study, three-dimensional culture of cancer cells was performed in the form of spheroids. A chip of U-shaped microstructures with and without gaps was used to trap cells and form cancer spheroids. We simulated the simultaneous effect of drug and oxygen concentration distribution inside the...
Appropriate Methods of River Quality Restoration
, M.Sc. Thesis Sharif University of Technology ; Hashemian, Jamal (Supervisor)
Abstract
The practice of river restoration has grown exponentially over the last several decades. There has been little empirical evaluation of whether restoration projects individually or cumulatively achieve the legally mandated goals of improving the structure and function of rivers. Nutrient reduction through simple methods is the most critical factor. The simplest method, which has minimal financial burden as well as preventing, and reducing the entrance of pollutants into the Chalus River (Mazandaran, in north of Iran), has been selected. The origins of rivers start at a high point and move with a steep. ...
Analysis of Premium Connections of Oil Well Equipment Under Very High Pressure Conditions
, M.Sc. Thesis Sharif University of Technology ; Arghavani Hadi, Jamal (Supervisor)
Abstract
Thread connections are widely used in tubular downhole equipment. Connections are usually weaker than tubulars and their failure will result in very high cost. Thread connections of downhole equipment are divided into two groups: standard connections and premium connections. Standard connections, despite being widely used, have limitations and will loose their efficiency in complex loadings. According to the mentioned limitations, premium connections have been proposed according to the existing need related to improving the strength of the structure, proper sealing and resistance to galling. One of the most obvious applications of premium connections is in downhole tubulars that are...
Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery
, Article Journal of Applied Polymer Science ; Volume 132, Issue 3 , August , 2015 ; 00218995 (ISSN) ; Rad, L. R ; Irani, M ; Haririan, I ; Sharif University of Technology
John Wiley and Sons Inc
2015
Abstract
In the present study, polylactic acid (PLA)/polyethylene glycol (PEG)/multiwalled carbon nanotube (MWCNT) electrospun nanofibrous scaffolds were prepared via electrospinning process and their applications for the anticancer drug delivery system were investigated. A response surface methodology based on Box-Behnken design (BBD) was used to evaluate the effect of key parameters of electrospinning process including solution concentration, feeding rate, tip-collector distance (TCD) and applied voltage on the morphology of PLA/PEG/MWCNT nanofibrous scaffolds. In optimum conditions (concentration of 8.15%, feeding rate of 0.2 mL/h, voltage of 18.50 kV and TCD of 13.0 cm), the minimum experimental...
The effect of stiffness on stress intensity factor for a crack in annular disc under constant central torque
, Article International Journal of Damage Mechanics ; Volume 19, Issue 8 , 2010 , Pages 1001-1015 ; 10567895 (ISSN) ; Gowhari Anaraki, A. R ; Hardy, S. J ; Sharif University of Technology
2010
Abstract
The finite element method has been used to predict the stress intensity factors for cracked annular discs under constant central torque. Linear elastic fracture mechanics finite element analyses have been performed and the results are demonstrated in the form of crack configuration factors. To this end, the extensive ranges of crack configuration factors have been employed while considering the effect of disc stiffness. Then, the finite element results are applied to develop equivalent prediction equations using a statistical multiple nonlinear regression model. The accuracy of this model is measured using a multiple coefficient of determination, R2, where 0 ≤R2 ≤1. This coefficient is found...
Analytical model of the electro-mechanical impedance response of frame structures with L-shaped beams
, Article Research in Nondestructive Evaluation ; Volume 31, Issue 3 , 2 January , 2020 , Pages 187-202 ; Hamzeloo, S. R ; Barzegar, M ; Pourkamali Anaraki, A ; Sharif University of Technology
Taylor and Francis Inc
2020
Abstract
The electro-mechanical impedance (EMI) method has been accepted as an effective technique for detecting damages in the Structural health monitoring (SHM). EMI at any point of the structure depends on material properties, geometry and boundary conditions that all appears in dynamic stiffness of the structure. In spite of the expensive experimental methods for measuring the mechanical impedance, or the cheaper one electromechanical impedance, of structures, various analytical methods could be substitutions for them. In this paper, an analytical method is developed to obtain the EMI response of L-shaped beams through calculating the dynamic stiffness of the structure. To verify the model, an...
Model Checking of Stochastic Activity Networks
, M.Sc. Thesis Sharif University of Technology ; Movaghar, Ali (Supervisor)
Abstract
Modeling and performance evaluation of the real time distributed systems is a significant problem. Stochastic activity network is one of the high level models used for this purpose. This network is an extension of generalized stochastic Petri net which is more powerful and flexible than other Petri net extensions. Checking the satisfiability of properties such as performance, dependability and user's expected properties is considerable in these models. Thus, using the approaches and generating modeling and model checking tools with the mentioned purpose is attractive. A model checker automatically checks the correctness of the system behaviors as properties against the model by getting the...
Fabrication of Thick Scaffold with Microfluidic Channels by Bioprinter
, M.Sc. Thesis Sharif University of Technology ; Saadatmand, Maryam (Supervisor)
Abstract
Cardiovascular diseases are among the leading causes of death worldwide. For instance, in 2015, almost 31% of the world’s mortality rate was due to these causes. One of these diseases is cardiac coronary vessels’ occlusion which leads to the insufficient blood supply to the heart tissue and cardiomyocytes death after Myocardial Infarction (MI). After MI, a hierarchy of events in the heart tissue changes heart muscle and forms cardiac fibrosis. This fibrotic tissue does not have the native one’s properties and function, so it will cause cardiac arrest and patient death. Therefore, it is obvious that vascular network plays a crucial role in the heart function. The importance of cardiac...
Robust Estimation and Control of a Planet Lander
, M.Sc. Thesis Sharif University of Technology ; Kiani, Maryam (Supervisor)
Abstract
This study has focused on the important problem of landing on a planet as an important current and future space mission. In this regard, dynamics modeling and integrated state estimation and control problems have been investigated in different views. To this aim, first a novel concurrent representation for translational and rotational kinematics has been developed based on the extension of modified Rodrigues parameters to dual space. This parameter set, called dual modified Rodrigues parameters (DMRP), is then utilized to establish an integrated roto-translational dynamic. The proposed DMRP-based kinematics and dynamics have been verified via comparison to traditional methods of...
Optimal Control of Unknown Interconnected Systems via Distributed Learning
, M.Sc. Thesis Sharif University of Technology ; Babazadeh, Maryam (Supervisor)
Abstract
This thesis addresses the problem of optimal distributed control of unknown interconnected systems. In order to deal with this problem, a data-driven learning framework for finding the optimal centralized and the suboptimal distributed controllers has been developed via convex optimization.First of all, the linear quadratic regulation (LQR) problem is formulated into a nonconvex optimization problem. Using Lagrangian duality theories, a semidefinite program is then developed that requires information about the system dynamics. It is shown that the optimal solution to this problem is independent of the initial conditions and represents the Q-function, an important concept in reinforcement...
Utilizing Gaussian Processes to Learn Dynamics of Unknown Torques Acting on a Spacecraft
, M.Sc. Thesis Sharif University of Technology ; Kiani, Maryam (Supervisor)
Abstract
Accurate and fast attitude estimation of a rigid body plays an essential role in the performance of a vehicle’s control system, especially aerospace vehicles. Ample works have been done to increase the accuracy and speed of the attitude estimation process, but all have been developed according to a model-based approach. This approach assumes that the torques acting on the body have a known dynamical model that is used for the attitude estimation. The purpose of the present research is to estimate the attitude via a model-free approach, i. e. dynamics of the torques acting on the body are no longer assumed to be known, and its learning is the next step. Thus, the problem formulation of this...
Stabilization and Pole-Placement by Structurally-Constrained Controllers: A Graph-Theoretic Approach
, M.Sc. Thesis Sharif University of Technology ; Babazadeh, Maryam (Supervisor)
Abstract
This thesis presents a new approach to design structural output feedback controllers with stabilization and pole-placement at desired points on the S plane. It is assumed that the linear time-invariant system has no fixed mode corresponding to the specified control structure, outside the desired region of the closed-loop poles, such that the structural controller design problem is theoretically feasible. To this end, the structural output controller design problem is first transformed into a structurally equivalent problem based on the solution of a set of discrete linear programs. Then, by using the resultant structure, a new method is proposed for designing static and dynamic control loops...
Fabrication the Hydrogel Microfibers Using Bioprinter with Application in Cardiovascular Model
, M.Sc. Thesis Sharif University of Technology ; Saadatmand, Maryam (Supervisor)
Abstract
Cardiovascular disease (CVD) currently remains a considerable challenge for clinical treatments. CVDs account for N17.5 million deaths per year and will predictably increase to 23.6 million by 2030. The main purpose is to create human model systems to study the effect of disease mutations or drug treatment on the heart. In addition, engineered cardiac tissues are considered promising candidates to be transplanted to improve the function of diseased hearts. For engineered active tissues/organs, 3D bioprinting can fabricate complex tissue architecture with a spatiotemporal distribution of bioactive substances (cells, growth factors, and others) to better guide tissue regeneration. However,...
Design of Microfluidic Chip for 3D Cell Culture
, M.Sc. Thesis Sharif University of Technology ; Saadatmand, Maryam (Supervisor)
Abstract
Understanding biological systems requires extensive knowledge of individual parameters, and to study the processes of cell differentiation and cell behavior, a suitable environment must be created with the physiological conditions of the human body. For this purpose, with the knowledge of microfluidics, a microenvironment can be provided to study the behavior of cells on a small scale. The use of bone tissue model microfluidic chips is an alternative and new method in which it is possible to study the behavior of cells to differentiate into bone and to examine the toxicity of drugs, which in itself can help in the effective and successful treatment of these cases show. Therefore, in this...
Optimal Energy Trading in a Smart Grid Based on Extremum-seeking Algorithm
, M.Sc. Thesis Sharif University of Technology ; Babazadeh, Maryam (Supervisor)
Abstract
Prevalent deployment of Distributed Energy Resources(DERs) in the demand side of electrical energy grids has several advantages such as greenhouse gases emission reduction, mitigation of power losses in the distribution grids and abatement of the dependency on the wholesale generation companies. At the same time, it paves the way for the advent of local interactive energy trading frameworks. In the following thesis, a distributed data-driven algorithm is developed for market-clearing in a community-based local energy market. The social welfare maximization is considered as the objective of the energy trading. The production and demand of electricity are the decision variables of sellers and...
Navigation and Control of a Free-Flying Satellite for Cargo Transportation and Placement in Intra-Vehicular Environment
, M.Sc. Thesis Sharif University of Technology ; Kiani, Maryam (Supervisor)
Abstract
The main topic of this research is the navigation and control of a free-flying satellite with a robot manipulator while transferring and placing cargo on a space station. After connecting the cargo module, astronauts and robots need to deliver the available loads to the desired modules in a space station. Capturing an object or cargo is a critical issue studied extensively so far. However, delivery and placing of the cargo at the target point have not been investigated yet, to the best of the author’s knowledge; hence, this is a primary motivation for conducting the proposed research. After capturing the payload, the position and attitude of the manipulator with respect to the station’s...