Loading...
Search for: kajbafvala--a
0.15 seconds

    Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods

    , Article Superlattices and Microstructures ; Volume 51, Issue 4 , 2012 , Pages 512-522 ; 07496036 (ISSN) Kajbafvala, A ; Ghorbani, H ; Paravar, A ; Samberg, J. P ; Kajbafvala, E ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    In this study, two different chemical solution methods were used to synthesize Zinc oxide nanostructures via a simple and fast microwave assisted method. Afterwards, the photocatalytic performances of the produced ZnO powders were investigated using methylene blue (MB) photodegradation with UV lamp irradiation. The obtained ZnO nanostructures showed spherical and flower-like morphologies. The average crystallite size of the flower-like and spherical nanostructures were determined to be about 55 nm and 28 nm, respectively. X-ray diffraction (XRD), scanning electronic microscopy (SEM), Brunauer-Emmett-Teller (BET), room temperature photoluminescence (RT-PL) and UV-vis analysis were used for... 

    CVD growth of the nanostructured Ni3S2 thin films as efficient electrocatalyst for hydrogen evolution reaction

    , Article Vacuum ; Volume 188 , June , 2021 ; 0042207X (ISSN) Kajbafvala, M ; Moradlou, O ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The development of low cost and earth abundant electrocatalyst with high performance and desirable stability for hydrogen evolution reaction (HER) is an important issue in energy applications. Nickel sulfide thin films (NiSx) are formed on conductive nickel foam substrates via chemical vapor deposition (CVD) at 300 °C under low pressure condition. A single phase of Ni3S2 was produced by controlling the ratio of precursors. X-ray diffraction (XRD), field emission scanning electron spectroscopy (FESEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements were conducted to characterize and compare properties of the samples. According to XRD and XPS data analysis, the growth... 

    Effects of initial precursor and microwave irradiation on step-by-step synthesis of zinc oxide nano-architectures

    , Article Materials Letters ; Volume 67, Issue 1 , 2012 , Pages 342-345 ; 0167577X (ISSN) Kajbafvala, A ; Samberg, J. P ; Ghorbani, H ; Kajbafvala, E ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    ZnO nano-architectures were produced with the aid of a fast, simple and low cost microwave-assisted synthesis method. Solid semispherical ZnO nanoparticles on the order of 600 nm in diameter along with rice-like ZnO nanorods 95 nm thick were produced from butanol, triethanolamine (TEA), and zinc acetate dihydrate. Solid spherical ZnO nano-architectures with an average diameter of 250 nm were produced from the same starting materials in addition to NaOH. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the ZnO nano-architectures as well as the precursor. This method is cheap, fast and simple; capable of producing large quantities... 

    Microwave-assisted synthesis of narcis-like zinc oxide nanostructures

    , Article Journal of Alloys and Compounds ; Volume 497, Issue 1-2 , May , 2010 , Pages 325-329 ; 09258388 (ISSN) Kajbafvala, A ; Zanganeh, S ; Kajbafvala, E ; Zargar, H. R ; Bayati, M. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2010
    Abstract
    Through a fast, simple, low cost, surfactant-free and convenient microwave-assisted route, narcis-like ZnO nanostructures (10-15 nm size) with flower diameters in the range of 1-2.5 μm were synthesized. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and room temperature photoluminescence (PL) measurements were used to characterize the produced ZnO nanostructures. The principle raw materials - ammonium hydroxide (NH4OH) and zinc acetate dihydrate [Zn(CH3COO)2·2H2O] - were both inexpensive. The method was fast, simple and surfactant-free capable of producing larger quantities of zinc oxide... 

    Formation of Lanthanum hydroxide nanostructures: effect of NaOH and KOH solvents

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 169-176 ; 1728-144X (ISSN) Mazloumi, M ; Zanganeh, S ; Kajbafvala, A ; Shayegh, M. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Lanthanum hydroxide (La(OH)3) nanostructures, including elliptical nanoparticles, octahedral rods and irregular nanoparticles were prepared chemically in NaOH and KOH solutions with 10 M concentration. The obtained powders were characterized with XRD, SEM, TEM and DTA. Crystallinities, morphologies and thermal behavior of the obtained nanostructure powders were investigated under the influence of above mentioned solvents. The effect of chemical's temperature was also determined in one of the solvents (i.e. NaOH). The formation of growth in nanostructure mechanism under the influence of alkali solutions (i.e., KOH and NaOH) have been discussed considerably in this paper  

    3D bundles of self-assembled lanthanum hydroxide nanorods via a rapid microwave-assisted route

    , Article Journal of Alloys and Compounds ; Volume 473, Issue 1-2 , 2009 , Pages 283-287 ; 09258388 (ISSN) Mazloumi, M ; Shahcheraghi, N ; Kajbafvala, A ; Zanganeh, S ; Lak, A ; Mohajerani, M. S ; Sadrnezhaad, K ; Sharif University of Technology
    2009
    Abstract
    Three-dimensional (3D) bundles of self-assembled lanthanum hydroxide nanorods with average crystallite size of about 20 nm were fabricated via a facile and rapid microwave-assisted chemical route. The obtained material was characterized with X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. The obtained nanorods have average diameter of about 115 nm and average length of about 730 nm. Self-assembly of primary La(OH)3 nanoparticles and their subsequent anisotropic growth along 〈2 0 0〉 direction, was proposed to be the mechanism for the formation of 3D bundles of nanorods, using TEM images. The thermal behavior of the... 

    Boehmite nanopetals self assembled to form rosette-like nanostructures

    , Article Materials Letters ; Volume 62, Issue 26 , 2008 , Pages 4184-4186 ; 0167577X (ISSN) Mazloumi, M ; Attarchi, M ; Lak, A ; Mohajerani, M. S ; Kajbafvala, A ; Zanganeh, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    2008
    Abstract
    Rosette-like boehmite nanostructures were prepared successfully via a simple hydrothermal process. The obtained material was characterized with X-ray powder diffractometry (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Using Scherrer formula, the average crystallite size of the obtained boehmite rosettes was measured to be about 8 nm. It was shown that boehmite nanopetals with average width of about 41 nm determined by TEM, were formed during the hydrothermal process and then self assembled due to weak hydrogen bonds to fabricate boehmite rosettes. The specific surface area of the obtained rosette-like nanostructures was calculated through BET... 

    Self-assembly of dandelion-like hydroxyapatite nanostructures via hydrothermal method

    , Article Journal of the American Ceramic Society ; Volume 91, Issue 10 , 2008 , Pages 3292-3297 ; 00027820 (ISSN) Lak, A ; Mazloumi, M ; Mohajerani, M ; Kajbafvala, A ; Zanganeh, S ; Arami, H ; Sadrnezhaad, S. K ; Sharif University of Technology
    2008
    Abstract
    Self-assembled dandelion-like hydroxyapatite (HAp) nanostructures were successfully synthesized via a mild template-free hydrothermal process, using ethylenediaminetetraacetic acid (EDTA) as the surfactant. The obtained dandelion-like HAp nanostructures were between 5 and 8 μm in diameter and were composed of radially oriented nanorods with an average diameter of about 200 nm. The X-ray diffraction analysis and Fourier transform infrared spectroscopy were used to characterize the crystalline phase and purity of the synthesized nanostructures. The Brunauer-Emmett-Teller surface area of the dandelion-like nanostructures was measured to be about 39 m2/g. The results of thermal analysis revealed... 

    CVD fabrication of carbon nanotubes on electrodeposited flower-like Fe nanostructures

    , Article Journal of Alloys and Compounds ; Volume 507, Issue 2 , 2010 , Pages 494-497 ; 09258388 (ISSN) Zanganeh, S ; Torabi, M ; Kajbafvala, A ; Zanganeh, N ; Bayati, M. R ; Molaei, R ; Zargar, H.R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2010
    Abstract
    Galvanostatic method was used to electrodeposit Fe nanostructures on platinum electrodes as catalysts. Scanning electron microscopy (SEM) revealed flower-like Fe deposits with high surface area. Carbon nanotubes were grown on flower-like Fe nanostructures by chemical vapor deposition. The structure of the synthesized carbon nanotubes was investigated by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction. According to X-ray diffraction patterns, Fe was the only detected constituent of the deposited coating. The carbon nanotubes had small wall-thickness and wide hollow core  

    Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) Zareh, S. H ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
    2012
    Abstract
    A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network... 

    Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend

    , Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the... 

    A comparative study of the performance of a SI engine fuelled by natural gas as alternative fuel by thermodynamic simulation

    , Article 2009 ASME Internal Combustion Engine Division Fall Technical Conference, ICEF 2009, Lucerne, 27 September 2009 through 30 September 2009 ; 2009 , Pages 49-57 ; 9780791843635 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2009
    Abstract
    With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1-5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost... 

    Analytical and experimental analyses of nonlinear vibrations in a rotary inverted pendulum

    , Article Nonlinear Dynamics ; Volume 107, Issue 3 , 2022 , Pages 1887-1902 ; 0924090X (ISSN) Dolatabad, M.R ; Pasharavesh, A ; Khayyat, A. A. A ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Gaining insight into possible vibratory responses of dynamical systems around their stable equilibria is an essential step, which must be taken before their design and application. The results of such a study can significantly help prevent instability in closed-loop stabilized systems by avoiding the excitation of the system in the neighborhood of its resonance. This paper investigates nonlinear oscillations of a rotary inverted pendulum (RIP) with a full-state feedback controller. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model, whose parameter values are extracted by both the measurement and 3D modeling of the real system components. Although the governing... 

    A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils

    , Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 Pirjalili, A ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
    ASTM International  2020
    Abstract
    A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring... 

    Gum tragacanth gels as a new supporting matrix for immobilization of whole-cell

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 24, Issue 4 , 2005 , Pages 1-7 ; 10219986 (ISSN) Otady, M ; Vaziri, A ; Seifkordi, A. A ; Kheirolomoom, A ; Sharif University of Technology
    2005
    Abstract
    We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G acylase (PGA) activity. The results show that GT beads can not only serve as a proper matrix for immobilization, but show enhanced hydrolysis rate and stability compared to other immobilization systems used for this reaction. This signifies the potential of GT as a biocompatible matrix for... 

    True Class-E Design For Inductive Coupling Wireless Power Transfer Applications

    , Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) Haeri, A. A. R ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been... 

    Crashworthiness determination of side doors and B pillar of a vehicle subjected to pole side impact

    , Article Applied Mechanics and Materials ; Vol. 663, issue , 2014 , p. 552-556 Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2014
    Abstract
    Pole Side Impact Tes is one out of three crash tests described by Euro NCAP standard for star rating of a vehicle and is required for assessing the Adult Occupant Protection. In this paper the goal is to determine the crashworthiness of side doors and B pillar in a Pole Side Impact Test based on Euro New Car Assessment Program (Euro-NCAP) using computer and simulation method. In this matter, a vehicle model has been prepared and meshed using Hypermesh and CATIA. The velocity of 29 km/h has been assigned to the vehicle which was on top of a cart while the pole has been assigned as a rigid static object based on Euro NCAP requirements specifically. Results show that different amounts of energy... 

    Investigation of Thickness Influences On Energy Absorption For Side Doors And B Pillar In Euro NCAP Pole Side Impact Test

    , Article Applied Mechanics and Materials ; Vol. 663, issue , Oct , 2014 , p. 585-589 Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2014
    Abstract
    To assess a car under the Euro New Car Assessment Program (Euro-NCAP), Adult Occupant Protection is one out of three parameters which need to be calculated with a weight factor of 50% while the other parameters, Child Occupant Protection and Pedestrian Occupant Protection, have a weight factor of 20%. The Pole Side Impact Test, beside two other tests, Side and Front Impact, is also required to calculate the Adult Occupant Protection. It shows how important the Pole Side Impact Test is and what an effective role it has in the car rating assessment. In this paper, the objective is to evaluate the effect of thickness on the energy absorbed by the side doors and the B pillar and its... 

    Crashworthiness determination for front and rear doors and B pillar subjected to side impact crash by a mobile deformable barrier

    , Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 392-395 ; 19366612 (ISSN) Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2013
    Abstract
    In Euro NCAP standard, adult protection is one of the most important rating scores with 50% weight factor while child protection and pedestrian protection are accounted into consideration with 20% weight factor. For adult protection testing, three tests are required to perform: (1) side impact, (2) pole impact, (3) front impact. In the side impact test, dummy's head, chest, shoulder, thorax, ribs, abdomen, pelvic and femur must be studied to evaluate the rating score. Crashworthiness of a car during side impact can describe the score rated for that car. In this paper the goal is to determine the crashworthiness of side doors and B-pillar in side impact crash est by simulation using LS DYNA... 

    Effect of material and thickness of side doors and B pillar on crashworthiness in euro NCAP side impact crash test

    , Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 420-424 ; 19366612 (ISSN) Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2013
    Abstract
    In side impact test which is one out of three tests of Euro NCAP standard, front and rear doors and B pillar are most absorbance parts among vehicle body parts. Passengers are highly in danger while side crash, because of the distance between passenger's head and vehicle body. In this paper effect of material and thickness of doors and B-pillar and their absorbed energy during crash and improvement of its crashworthiness with respect to light weight design are studied using LS DYNA solver. The objective of this paper is to propose a material for doors and B-pillar with a specified thickness to achieve maximum absorbed energy and minimum weight. The shape of the doors and B-pillar remains...