Loading...
Search for:
karbaschi--m
0.127 seconds
Total 19328 records
A novel technique to semi-quantitatively study the stability of emulsions and the kinetics of the coalescence under different dynamic conditions
, Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 460 , 2014 , pp. 327-332 ; ISSN: 09277757 ; Orr, R ; Bastani, D ; Javadi, A ; Lotfi, M ; Miller, R ; Sharif University of Technology
2014
Abstract
The kinetics of coalescence is studied experimentally using a new technique for tracking the process in the bulk phase. For this aim, aqueous solutions of KSCN (colorless) and FeCl3 (light yellow) are used to make individual W/O emulsions. Any coalescence occurred between drops containing KSCN solution and those containing FeCl3 solution would combine these solutions. This leads to a reddish brown solution due to the formation of iron(III)thiocyanate. The intensity change of this red color with time represents the dynamics of coalescence occurring between drops of different emulsified aqueous droplets. The detector response to any changes in the system is recorded as a function of time. In...
Rheology of interfacial layers
, Article Current Opinion in Colloid and Interface Science ; Vol. 19, issue. 6 , 2014 , pp. 514-519 ; ISSN: 13590294 ; Lotfi, M ; Kragel, J ; Javadi, A ; Bastani, D ; Miller, R ; Sharif University of Technology
2014
Abstract
Dilational and shear viscoelasticities are important properties of interfacial layers. These quantities are particularly relevant in all systems which contain a huge internal interfacial area such as foams and emulsions. Therefore, also the 3D rheological behavior of foams or emulsions studied by respective methods is superimposed by the 2D interfacial rheology.We report on recent developments in dilational and shear rheology from an experimental point of view as well as discuss the state of the art of the underlying theories. Examples of most relevant experiments are also presented and discussed. Although not yet extensively investigated, the links between bulk rheology of foams and...
High frequency oscillatory flow in micro channels
, Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 460 , 2014 , pp. 355-360 ; ISSN: 09277757 ; Javadi, A ; Bastani, D ; Miller, R ; Sharif University of Technology
2014
Abstract
This paper deals with computational and experimental studies on the oscillatory flow at high frequencies up to 100. Hz performed with the Oscillating Drop and Bubble Analyzer (ODBA) setup based on the capillary pressure technique. The CFD results are validated considering pressure amplitude experimental data. The simulated results of phase shift between the generated oscillatory flow and the consequent pressure amplitudes show also good agreement with the experimental data. In absence of any compressibility and viscoelasticity effects and assumptions, a complex velocity field during oscillation is the main reason for the observation of a phase shift. The results of velocity profiles at the...
Mixed protein-surfactant adsorption layers formed in a sequential and simultaneous way at water-air and water-oil interfaces
, Article Soft Matter ; Volume 8, Issue 22 , 2012 , Pages 6057-6065 ; 1744683X (ISSN) ; Kotsmar, C ; Ferri, J. K ; Javadi, A ; Karbaschi, M ; Krägel, J ; Wüstneck, R ; Miller, R ; Sharif University of Technology
2012
Abstract
Mixed protein-surfactant adsorption layers can be built up in two different ways. The classical way is when all components adsorb simultaneously from a mixed solution. Alternatively, the components adsorb one after another, i.e. in a sequential way. In the present work, the formation of such surface layers has been studied with the random coil protein β-casein in the presence of added anionic surfactant SDS and compared for two different interfaces: the water-air (W-A) and water-hexane (W-H) interfaces. The used experimental technique is a drop profile analysis tensiometer PAT-1 specially equipped with a coaxial double capillary for drop volume exchange during the experiments. The results...
Computational Simulation of High Density Ratio Drop Deformation and Breakup, Using Lattice Boltzmann Method
, M.Sc. Thesis Sharif University of Technology ; Taeibi Rahni, Mohammad (Supervisor) ; Karbaschi, Mohsen (Supervisor)
Abstract
Deformation and breakup of drops are the basisof many interfacial flow studies and appear in a number of industrial applications, e.g., spray painting, spray combustion, emulsion, foam, sedimentation, and rain. Following their formation, drops may enter a region where hydrodynamicforces are large enough to cause their significant deformation and breakup. When a drop breaks apart into a multitude of small fragments due to disruptive hydrodynamicforces, the process is termed secondary atomization or breakup. Due to many engineering and scientific applications of multiphase and multi-component flows, they have been the main topic of many researchers for many years. Particularly, interfacial...
Drop profile analysis tensiometry under highly dynamic conditions
, Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 413 , 2012 , Pages 292-297 ; 09277757 (ISSN) ; Bastani, D ; Javadi, A ; Kovalchuk, V. I ; Kovalchuk, N. M ; Makievski, A. V ; Bonaccurso, E ; Miller, R ; Sharif University of Technology
2012
Abstract
Profile analysis tensiometry (PAT) is presently the most frequently used technique for measuring surface tensions of liquids. The basis of this methodology is however an equilibrium force balance as given by the Gauss-Laplace equation. Therefore, its application under dynamic conditions, i.e. for growing drops or bubbles, is questionable. We discuss the limits of the applicability of PAT under dynamic conditions by using a growing drop configuration equipped with a high speed video camera. The systems studied are the water/air and water/hexane interface. The obtained "dynamic" drop profiles are analyzed by fitting the classical Gauss-Laplace equation. The results are additionally compared...
Simultaneous versus sequential adsorption of β-casein/SDS mixtures. Comparison of water/air and water/hexane interfaces
, Article ACS Symposium Series ; Volume 1120 , 2012 , Pages 153-178 ; 00976156 (ISSN) ; 9780841227965 (ISBN) ; Gochev, G ; Kotsmar, Cs ; Ferri, J. K ; Javadi, A ; Karbaschi, M ; Krägel, J ; Wüstneck, R ; Miller, R ; Sharif University of Technology
2012
Abstract
This chapter is dedicated to the surface properties of mixed protein/surfactant adsorption layers, formed by two different experimental approaches, i.e. by sequential and simultaneous adsorption, respectively. A special modification of a drop profile analysis tensiometer, consisting of a coaxial double capillary, provides a unique protocol for studies of mixed surface layers formed by sequential adsorption of the individual components in addition to the traditional simultaneous adsorption from their mixed solution. A CFD simulation allowed to optimize the drop exchange process performed with the special double capillary arrangement. The experiments show that properties of sequentially formed...
Fast dynamic interfacial tension measurements and dilational rheology of interfacial layers by using the capillary pressure technique
, Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 407 , August , 2012 , Pages 159-168 ; 09277757 (ISSN) ; Krägel, J ; Makievski, A. V ; Kovalchuk, V. I ; Kovalchuk, N. M ; Mucic, N ; Loglio, G ; Pandolfini, P ; Karbaschi, M ; Miller, R ; Sharif University of Technology
Elsevier
2012
Abstract
The oscillating drop and bubble analyzer (ODBA) is an experimental set-up based on the measurement of capillary pressure under static and dynamic conditions. It allows studies of slow and fast dynamic surface and interfacial tensions, following different growing and oscillating drop or bubble protocols, as well as determination of the dilational interfacial visco-elasticity of liquid interfacial layers. For the visco-elasticity studies, drops or bubbles are subjected to harmonic oscillations of area or volume in a broad frequency range, and the resulting harmonic capillary pressure response is analyzed by Fourier analysis. Also, transient relaxations can be easily performed, which are of...
The Dynamic Interfacial Phenomena Investigations on Mobile Fluid Surfaces: Experimental Studies and CFD Simulations
, Ph.D. Dissertation Sharif University of Technology ; Bastani, Dariush (Supervisor) ; Miller, Reinhard (Co-Advisor) ; Yar Javadi, Ali (Co-Advisor)
Abstract
Understanding the hydrodynamic and physical chemistry basis of surface phenomena is very important for many branches of basic science like Chemical Engineering, Mechanics, Space Engineering, and Material Engineering in the level of fundamental studies and applications. In addition to the common technologies, the role of surface phenomena in novel technologies is also very essential. For example, nanotechnology, chemical or physical sensors, or micro electrical systems in which surface phenomena is playing a main role. Therefore, understanding the basis of surface science is very important for any development in many industrial and fundamental studies. The main topic of this thesis which is a...
Characterization methods for liquid interfacial layers
, Article European Physical Journal: Special Topics ; Volume 222, Issue 1 , 2013 , Pages 7-29 ; 19516355 (ISSN) ; Mucic, N ; Karbaschi, M ; Won, J. Y ; Lotfi, M ; Dan, A ; Ulaganathan, V ; Gochev, G ; Makievski, A. V ; Kovalchuk, V. I ; Kovalchuk, N. M ; Kragel, J ; Miller, R ; Sharif University of Technology
2013
Abstract
Liquid interfaces are met everywhere in our daily life. The corresponding interfacial properties and their modification play an important role in many modern technologies. Most prominent examples are all processes involved in the formation of foams and emulsions, as they are based on a fast creation of new surfaces, often of an immense extension. During the formation of an emulsion, for example, all freshly created and already existing interfaces are permanently subject to all types of deformation. This clearly entails the need of a quantitative knowledge on relevant dynamic interfacial properties and their changes under conditions pertinent to the technological processes. We report on the...
Dynamics of drops - Formation, growth, oscillation, detachment, and coalescence
, Article Advances in Colloid and Interface Science ; Volume 222 , 2015 , Pages 413-424 ; 00018686 (ISSN) ; Taeibi Rahni, M ; Javadi, A ; Cronan, C. L ; Schano, K. H ; Faraji, S ; Won, J. Y ; Ferri, J. K ; Krägel, J ; Miller, R ; Sharif University of Technology
Elsevier
2015
Abstract
Single drops or bubbles are frequently used for the characterization of liquid- fluid interfaces. Their advantage is the small volume and the various protocols of their formation. Thus, several important methods are based on single drops and bubbles, such as capillary pressure and profile analysis tensiometry. However, these methods are often applied under dynamic conditions, although their principles are defined under equilibrium conditions. Thus, specific attention has to be paid when these methods are used beyond certain limits. In many cases, computational fluid dynamics (CFD) simulations have allowed researchers, to extend these limits and to gain important information on the...
Probability of missed detection as a criterion for receiver placement in MIMO PCL
, Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
IEEE
2012
Abstract
Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar
An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation
, Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
2008
Abstract
SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity
MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak
, Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
Elsevier
2016
Abstract
One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function...
Detection-localization tradeoff in MIMO radars
, Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance...
Antenna placement and power allocation optimization in MIMO detection
, Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive...
Ambiguity function of MIMO radar with widely separated antennas
, Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas
Choosing the position of the receiver in a MISO passive radar system
, Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
2012
Abstract
By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only...
Adaptive filtering techniques in passive radar
, Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2013
Abstract
One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared
Ambiguity function based receiver placement in multi-site radar
, Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite...