Loading...
Search for:
karmozdi--a
0.147 seconds
Total 14692 records
Experimental study of a novel Magneto Mercury Reciprocating (MMR) micropump, fabrication and operation
, Article Sensors and Actuators, A: Physical ; Volume 194 , 2013 , Pages 277-284 ; 09244247 (ISSN) ; Salari, A ; Shafii, M. B ; Sharif University of Technology
2013
Abstract
Today, MEMS have wide applications in modern technologies. Magneto hydro dynamic (MHD) micropumps play an important role in the MEMS industry and have been thoroughly studied in the recent years. In this study, the idea of classic reciprocating micropumps was combined with magneto hydro dynamics (MHD) to develop a novel Magneto Mercury Reciprocating (MMR) micropump. To attain this goal, the Lorentz force, as the actuation mechanism, was used to move a conductive liquid (mercury) slug in a reciprocating manner in order to suck the working fluid (air) from the inlet and pump it to the outlet. The performance of the fabricated MMR micropump was examined in terms of parameters such as pressure...
Implementation of translational motion dynamics for INS data fusion in DVL outage in underwater navigation
, Article IEEE Sensors Journal ; 2020 ; Hashemi, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2020
Abstract
Underwater navigation is generally accomplished through the data fusion of INS (Inertial Navigation System) and auxiliary sensors such as DVL (Doppler Velocity Logger) sensor. However, because of the possibility of DVL outage, alternative low-cost solutions are attractive. Among these, one is using vehicle kinetic model information extracted by the Newton-Euler equation to improve INS performance, which is called model-aided navigation. In this paper, only the vehicle translational motion dynamics are used to replace DVL in underwater navigation in DVL outage. The vehicle 3D translational dynamics has been obtained by using general Newton-Euler equations. Integrating these dynamics leads to...
INS-DVL navigation improvement using rotational motion dynamic model of AUV
, Article IEEE Sensors Journal ; Volume 20, Issue 23 , 2020 , Pages 14329-14336 ; Hashemi, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2020
Abstract
INS-DVL integration is a common method for underwater navigation. However, inherent errors of sensors, especially in MEMS IMUs, lead to inaccuracies in estimating the position and attitude. In this paper, dynamic motion model of AUV is used to improve MEMS INS-DVL navigation. In this method, which is called model-aided or model-based navigation, the information of the kinetic model of the vehicle (obtained from Newton-Euler equations) is used to improve the navigation performance. Previous model-aided navigation studies about AUVs have been focused on the translational dynamic model of vehicles. As the best of our knowledge, this paper is the first one which suggests using a rotational...
Implementation of translational motion dynamics for INS data fusion in DVL outage in underwater navigation
, Article IEEE Sensors Journal ; Volume 21, Issue 5 , 2021 , Pages 6652-6659 ; 1530437X (ISSN) ; Hashemi, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2021
Abstract
Underwater navigation is generally accomplished through the data fusion of INS (Inertial Navigation System) and auxiliary sensors such as DVL (Doppler Velocity Logger) sensor. However, because of the possibility of DVL outage, alternative low-cost solutions are attractive. Among these, one is using vehicle kinetic model information extracted by the Newton-Euler equation to improve INS performance, which is called model-aided navigation. In this paper, only the vehicle translational motion dynamics are used to replace DVL in underwater navigation in DVL outage. The vehicle 3D translational dynamics has been obtained by using general Newton-Euler equations. Integrating these dynamics leads to...
Underwater Navigation by Acoustic Sensors and INS data Fusion
, M.Sc. Thesis Sharif University of Technology ; Salarieh, Hassan (Supervisor)
Abstract
In this study, by INS and auxiliary acoustic sensors data fusion, underwater navigation algorithm is implemented and validated by computer simulations. Extended Kalman Filter based on perturbation analysis is used as combination algorithm. The outputs of the INS forms equations of mechanism. The variational variables are state variables estimated in the Kalman filter. Because of the weakness of the GPS signals due to electromagnetic signals Attenuation in water, acoustic sensors are used as auxiliary sensors in underwater navigation. Here those acoustic sensors that implementing them in this country is impossible or very costly would not be examined.In this research the output of Doppler...
Design and Fabrication of a Novel Mercury Micropump Actuated Electeromagneticaly
, M.Sc. Thesis Sharif University of Technology ; Shafii, Mohammad Behshad (Supervisor)
Abstract
Considering the advantages and disadvantages of reported micropumps, we aimed to introduce a novel idea to diminish the disadvantages and promote the advantages of PiezoElectric micropumps. This novel idea operates based on a mercury slug actuation in a microchannel. This cyclic motion of the mercury slug which is similar to a piston, push the fluid in the microchannel and pump the flow. However, to bring this idea into the practice, a control system must be designed. This system contains: LABVIEW code, DAQ board & a switching Board. The pattern of actuating mercury is drawn in LABVIEW. DAQ Board produces electrical signals according to LABVIEW code. Switching board will transform the...
The effect of droplet size, channel length and the amount of electromagnetic actuation force on reciprocating movement of mercury droplets in the magneto mercury reciprocating (MMR) micropumps
, Article Sensors and Actuators, A: Physical ; Volume 283 , 2018 , Pages 204-210 ; 09244247 (ISSN) ; Shafii, M. B ; Afshin, H ; Sharif University of Technology
Elsevier B.V
2018
Abstract
Micropumps are regarded as one of the devices used in microsystems, which are responsible for pumping working fluid. The magnetic reciprocating micropump is an example of the existing micropumps in which the pumping agent includes three liquid metal droplets placed inside lateral channels and reciprocated by the electromagnetic force inside their channels. The working fluid located inside the main channel is pumped through due to the movement of these three droplets. The time duration in which the droplet traverses the sub-channel length is crucial in the operation of the suggested micropump. The present study aims to evaluate the effect of the length of sub-channels, moving droplet volume...
Electrical analogies applied on MMR micropump
, Article Sensors and Actuators, A: Physical ; Volume 301 , 2020 ; Afshin, H ; Shafii, M. B ; Sharif University of Technology
Elsevier B.V
2020
Abstract
Micropumps are among useful equipment in microsystems. The magnetically actuated mercury micropump, which has been introduced for less than a decade, is an innovative kind of micropumps which uses mercury droplets motion as a pumping agent. The equations governing this micropump are complex and their numerical solution is a time-consuming process, due to electromagnetic, hydrodynamic, and unsteady effects. In the present study, for the first time, using simplifying assumptions, the performance of a Magneto Mercury Reciprocating (MMR) micropump with electromagnetic actuation is studied through electrical analogy and then, the components and operational stages of the micropump are simulated...
Study on Motion of Electrical Conductor Fluid Plug Actuated Electromagnetically in Microsystems
, Ph.D. Dissertation Sharif University of Technology ; Shafii, Mohmmad Behshad (Supervisor) ; Afshin, Hossein (Supervisor)
Abstract
Micropumps are regarded as one of the devices used in microsystems, which are responsible for pumping working fluid. The Mercury Magneto Reciprocating (MMR) micropump, which has been introduced for less than a decade, is an innovative kind of micropumps which the pumping agent includes three liquid metal droplets (LMD) placed inside lateral chambers and reciprocated by the electromagnetic force inside the chambers. The working fluid located inside the main channel is pumped through due to the movement of these three LMDs. The equations governing this micropump are complex and their numerical solution is a time-consuming process, due to electromagnetic, hydrodynamic, and unsteady effects. The...
Increasing Robustness and Performance of the Ins-Dvl Underwater Navigation by Using Model-Aided Navigation
, Ph.D. Dissertation Sharif University of Technology ; Salarieh, Hassan (Supervisor) ; Alasty, Aria (Supervisor) ; Hashemi, Mojtaba (Co-Supervisor)
Abstract
Dopller velocity log (DVL) is an important underwater navigation sensor. But in the INS-DVL integrated navigation systems, positional error grows unlimitedly over time. Also, the losing bottom lock (LBL) phenomenon is possible in DVL for various reasons such as AUV severe angular changes. So INS-DVL systems are not robust against environmental disturbances resulting in LBL. In this research, mode-aided navigation is used to improve the INS-DVL navigation system. Model-aided navigation is divided into two categories: using kinematic constraints and using kinetic model. Both approaches are used in this research to improve navigation performance and robustness. Initially, the existing kinematic...
Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers
, Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
2012
Abstract
A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network...
Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend
, Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
2012
Abstract
Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the...
A comparative study of the performance of a SI engine fuelled by natural gas as alternative fuel by thermodynamic simulation
, Article 2009 ASME Internal Combustion Engine Division Fall Technical Conference, ICEF 2009, Lucerne, 27 September 2009 through 30 September 2009 ; 2009 , Pages 49-57 ; 9780791843635 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
American Society of Mechanical Engineers (ASME)
2009
Abstract
With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1-5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost...
Analytical and experimental analyses of nonlinear vibrations in a rotary inverted pendulum
, Article Nonlinear Dynamics ; Volume 107, Issue 3 , 2022 , Pages 1887-1902 ; 0924090X (ISSN) ; Pasharavesh, A ; Khayyat, A. A. A ; Sharif University of Technology
Springer Science and Business Media B.V
2022
Abstract
Gaining insight into possible vibratory responses of dynamical systems around their stable equilibria is an essential step, which must be taken before their design and application. The results of such a study can significantly help prevent instability in closed-loop stabilized systems by avoiding the excitation of the system in the neighborhood of its resonance. This paper investigates nonlinear oscillations of a rotary inverted pendulum (RIP) with a full-state feedback controller. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model, whose parameter values are extracted by both the measurement and 3D modeling of the real system components. Although the governing...
A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils
, Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
ASTM International
2020
Abstract
A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring...
Gum tragacanth gels as a new supporting matrix for immobilization of whole-cell
, Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 24, Issue 4 , 2005 , Pages 1-7 ; 10219986 (ISSN) ; Vaziri, A ; Seifkordi, A. A ; Kheirolomoom, A ; Sharif University of Technology
2005
Abstract
We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G acylase (PGA) activity. The results show that GT beads can not only serve as a proper matrix for immobilization, but show enhanced hydrolysis rate and stability compared to other immobilization systems used for this reaction. This signifies the potential of GT as a biocompatible matrix for...
True Class-E Design For Inductive Coupling Wireless Power Transfer Applications
, Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2022
Abstract
The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been...
Crashworthiness determination of side doors and B pillar of a vehicle subjected to pole side impact
, Article Applied Mechanics and Materials ; Vol. 663, issue , 2014 , p. 552-556 ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2014
Abstract
Pole Side Impact Tes is one out of three crash tests described by Euro NCAP standard for star rating of a vehicle and is required for assessing the Adult Occupant Protection. In this paper the goal is to determine the crashworthiness of side doors and B pillar in a Pole Side Impact Test based on Euro New Car Assessment Program (Euro-NCAP) using computer and simulation method. In this matter, a vehicle model has been prepared and meshed using Hypermesh and CATIA. The velocity of 29 km/h has been assigned to the vehicle which was on top of a cart while the pole has been assigned as a rigid static object based on Euro NCAP requirements specifically. Results show that different amounts of energy...
Investigation of Thickness Influences On Energy Absorption For Side Doors And B Pillar In Euro NCAP Pole Side Impact Test
, Article Applied Mechanics and Materials ; Vol. 663, issue , Oct , 2014 , p. 585-589 ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2014
Abstract
To assess a car under the Euro New Car Assessment Program (Euro-NCAP), Adult Occupant Protection is one out of three parameters which need to be calculated with a weight factor of 50% while the other parameters, Child Occupant Protection and Pedestrian Occupant Protection, have a weight factor of 20%. The Pole Side Impact Test, beside two other tests, Side and Front Impact, is also required to calculate the Adult Occupant Protection. It shows how important the Pole Side Impact Test is and what an effective role it has in the car rating assessment. In this paper, the objective is to evaluate the effect of thickness on the energy absorbed by the side doors and the B pillar and its...
Crashworthiness determination for front and rear doors and B pillar subjected to side impact crash by a mobile deformable barrier
, Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 392-395 ; 19366612 (ISSN) ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2013
Abstract
In Euro NCAP standard, adult protection is one of the most important rating scores with 50% weight factor while child protection and pedestrian protection are accounted into consideration with 20% weight factor. For adult protection testing, three tests are required to perform: (1) side impact, (2) pole impact, (3) front impact. In the side impact test, dummy's head, chest, shoulder, thorax, ribs, abdomen, pelvic and femur must be studied to evaluate the rating score. Crashworthiness of a car during side impact can describe the score rated for that car. In this paper the goal is to determine the crashworthiness of side doors and B-pillar in side impact crash est by simulation using LS DYNA...