Loading...
Search for:
kashfi--m
0.141 seconds
Total 19329 records
Aero-thermal redesign of a high pressure turbine nozzle guide vane
, Article Propulsion and Power Research ; Volume 8, Issue 4 , 2019 , Pages 310-319 ; 2212540X (ISSN) ; Khavari, A ; Alizadeh, M ; Kashfi, B ; Khaledi, H ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
The current article presents conceptual, preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane. Design targets are lower coolant consumption, reduced manufacturing costs and improved durability. These goals are sought by 25% reduction in vane count number and lower number of airfoils per segment. Design challenges such as higher airfoil loading, associate aerodynamic losses and higher thermal loads are discussed. In order to maximize coolant flow reduction and avoid higher aerodynamic losses, airfoil Mach distribution is carefully controlled. There has been an effort to limit design changes so that the proven design features of the original vane...
A Dynamic Programming Approach for Network Air Cargo Revenue Management
, M.Sc. Thesis Sharif University of Technology ; Modarres, Mohammad (Supervisor)
Abstract
This research aims to establish a novel approach to meet the capacity utilization challenge of the freight forwarders in order to maximize the expected revenue in a cargo network. The two-dimensional cargo capacities are assumed to be stochastic and limited in each leg. A stochastic dynamic programming model is developed to demonstrate the maximization of expected revenue over a finite planning horizon, in which each fare class request is to be either accepted or rejected. Although the main problem is computationally intractable due to multidimensional state variable, it can be decomposed into one-dimensional capacity control sub-problems for each leg. A heuristic algorithm is developed to...
Evalution of Aerosol Optical Depth Modeled by CMAQ
, M.Sc. Thesis Sharif University of Technology ; Arhami, Mhammad (Supervisor)
Abstract
Particuale matters, as a criterion for evaluationg the air quality, have been one of the most important air pollutants through the last decade. Considering the adverse health effects of particulate matters, the importance of monitoring pollutant’s concentration is inevitable. While there are monitoring stations for evaluating the air quality, our knowledge is so limtted since there are few stations working, so there is a spatial and temporal gap. On the other hand, chemical transport models and remote sensing provide us a better chance to track the air quality thoroughly. Since chemical transport models are our only way of filling the gaps, they should be rigorous and accurate. In this study...
Evaluation of sample scale effect on geomechanical tests
, Article Petroleum Research ; Volume 7, Issue 4 , 2022 , Pages 527-535 ; 20962495 (ISSN) ; Shad, S ; Zivar, D ; Sharif University of Technology
KeAi Publishing Communications Ltd
2022
Abstract
The size of the rock specimen affects the stress concentrates in the vicinity of the top/bottom of the rock specimen during the evaluation of the geomechanical parameters in the laboratory, which causes unreliable results. However, the appropriate size for geomechanical evaluation is not well understood yet because of limitations in the sampling and analysis. In this study, a series of numerical simulations using a finite element package was conducted to investigate the effect of sample aspect ratio, fluid saturation, and porosity, on the mechanical behavior of the rock under elastic and poroelastic conditions. In addition, two concepts, stress/strain homogeneity index (SHI) and...
Upscaling of Geomechanical Data
, M.Sc. Thesis Sharif University of Technology ; Shad, Saeed (Supervisor) ; Masihi, Mohsen (Supervisor) ; Khoyi, Amir Reza (Co-Supervisor)
Abstract
In the oil and gas industry, in different stages of exploration and production of oil from hydrocarbon reservoirs, there are several challenges, most of which are due to unbalanced physical-mechanical conditions of the formations. Today, geomechanics of reservoirs is recognized as a key to analyze and solve such problems.Activities such as drilling, perforation, fracturing, production and fluid injection into the reservoir can alter the reservoir stress field and can cause rock deformation. Excessive compaction of reservoir rock can cause surface or seabed subsidence and damage to surface facilities and subsurface tubular. In general, rock compaction can cause many problems if not predicted...
Probability of missed detection as a criterion for receiver placement in MIMO PCL
, Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
IEEE
2012
Abstract
Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar
An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation
, Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
2008
Abstract
SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity
MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak
, Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
Elsevier
2016
Abstract
One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function...
Detection-localization tradeoff in MIMO radars
, Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance...
Antenna placement and power allocation optimization in MIMO detection
, Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive...
Ambiguity function of MIMO radar with widely separated antennas
, Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas
Choosing the position of the receiver in a MISO passive radar system
, Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
2012
Abstract
By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only...
Adaptive filtering techniques in passive radar
, Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2013
Abstract
One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared
Ambiguity function based receiver placement in multi-site radar
, Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite...
Improving MIMO radar's performance through receivers' positioning
, Article IET Signal Processing ; Volume 11, Issue 5 , 2017 , Pages 622-630 ; 17519675 (ISSN) ; Radmard, M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
Institution of Engineering and Technology
2017
Abstract
By employing the MIMO (multiple-input-multiple-output) technology in radar, some new problems emerged, that, in order to benefit the MIMO gains in radar, it was necessary to solve them suitably. One of such obstacles is determining the positions of receive antennas in a MIMO radar system with widely separated antennas (WS MIMO radar), since it is shown that the antennas' positions affect the whole system's performance considerably. In this study, a proper receivers' positioning procedure is proposed. To do this end, four criteria are developed based on the proposed MIMO detector and the MIMO ambiguity function. The simulations verify that the proposed positioning procedure improves the...
Silylation of hydroxy groups with HMDS under microwave irradiation and solvent-free conditions
, Article Phosphorus, Sulfur and Silicon and Related Elements ; Volume 177, Issue 2 , 2002 , Pages 289-292 ; 10426507 (ISSN) ; Saidi, M. R ; Bolourtchian, M ; Heravi, M. M ; Sharif University of Technology
2002
Abstract
Phenols and alcohols are silylated with hexamethyldisilazane (HMDS) under microwave irradiation in solvent-free condition in good to excellent yields
Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory
, Article Acta Mechanica ; Vol. 225, Issue 6 , June , 2014 , pp. 1523-1535 ; Online ISSN: 1619-6937 ; Rastgoo, A ; Ahmadian, M. T ; Mashhadi, M. M ; Sharif University of Technology
2014
Abstract
Modified couple stress theory is a size-dependent theorem capturing the micro/nanoscale effects influencing the mechanical behaviors of the micro- and nanostructures. In this paper, it is applied to investigate the nonlinear vibration of carbon nanotubes under step DC voltage. The vibration, natural frequencies and dynamic pull-in characteristics of the carbon nanotubes are studied in detail. Moreover, the effects of various boundary conditions and geometries are scrutinized on the dynamic characteristics. The results reveal that application of this theory leads to the higher values of the natural frequencies and dynamic pull-in voltages
White space regions
, Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 22 January 2011 through 28 January 2011, Novy Smokovec ; Volume 6543 LNCS , 2011 , Pages 226-237 ; 03029743 (ISSN) ; 9783642183805 (ISBN) ; Fazli, M ; Ghodsi, M ; Safari, M ; Saghafian, M ; Tavakkoli, M ; Sharif University of Technology
2011
Abstract
We study a classical problem in communication and wireless networks called Finding White Space Regions. In this problem, we are given a set of antennas (points) some of which are noisy (black) and the rest are working fine (white). The goal is to find a set of convex hulls with maximum total area that cover all white points and exclude all black points. In other words, these convex hulls make it safe for white antennas to communicate with each other without any interference with black antennas. We study the problem on three different settings (based on overlapping between different convex hulls) and find hardness results and good approximation algorithms
Utilization of hybrid nanofluids in solar energy applications: A review
, Article Nano-Structures and Nano-Objects ; Volume 20 , 2019 ; 2352507X (ISSN) ; Ghazvini, M ; Sadeghzadeh, M ; Alhuyi Nazari, M ; Ghalandari, M ; Sharif University of Technology
Elsevier B.V
2019
Abstract
Hybrid nanofluids have several advantages compared with the conventional types due to their modified properties. Their enhanced thermophysical and rheological properties make them more appropriate for solar energy systems. In this review paper, an overview of solar energy systems is represented, and afterwards, applications of hybrid nanofluids in various solar technologies, especially solar thermal, are reviewed. Comparison between the nanofluidic systems, and the conventional ones is performed in order to gain a deeper insight into the advantages of using nanofluids. According to the results of the reviewed studies, the most important reason for performance enhancement of nanofluidic solar...
Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin
, Article Agricultural Water Management ; Volume 213 , 2019 , Pages 782-791 ; 03783774 (ISSN) ; Emadzadeh, M ; Gholizadeh, M ; Tajrishi, M ; Ahmadi, M ; Moradi, M ; Sharif University of Technology
Elsevier B.V
2019
Abstract
Urmia Lake River Basin (ULRB) is one of the most important habitats in the world and one of the major agricultural regions in Iran. On average, the ratio of irrigation to evapotranspiration in this basin is more than 73%. Investigating the irrigation water requirement pattern changes and the spatial distribution of evapotranspiration during the basin development period on a regional scale play important roles in understanding the basin situation. In this study, the actual evapotranspiration has been estimated by SEBAL model. By estimating the precipitation distribution in the basin, the agricultural irrigation water requirement pattern has been calculated using the land use map in 1995, 2010...