Loading...
Search for: kazemeini--a
0.145 seconds

    Promoting sustainable transport in developing countries: a case study of university students in tehran

    , Article Future Transportation ; Volume 3, Issue 3 , 2023 , Pages 858-877 ; 26737590 (ISSN) Kazemeini, A ; Kermanshah, A ; Sharif University of Technology
    Multidisciplinary Digital Publishing Institute (MDPI)  2023
    Abstract
    One of the ways to address the modern traffic-related problems is to encourage people to use sustainable travel modes more regularly. Transportation planners need to find the factors that affect people’s opinions toward using these modes. In this study, we investigated these factors using a case study of a developing country by distributing an online survey among the students of four universities in Tehran. The number of complete responses received was 134 from SUT, 63 for UT, 31 from AUT, and 204 from IUST, summing up to 432 responses. A binomial logistic regression model was used to find the paramount factors affecting the selection of cycling and public transportation. Our model found... 

    One-pot diastereoselective synthesis of α-aminonitriles from aldehydes, chiral amines, and trimethylsilyl cyanide under solvent-free conditions [electronic resource]

    , Article Russian Journal of Organic Chemistry ; January 2006, Volume 42, Issue 1, pp 48-51 Kazemeini, A ; Azizi, N ; Saidi, M, R ; Sharif Univercity of Technology
    Abstract
    Treatment of aliphatic and aromatic aldehydes with chiral amines and trimethylsilyl cyanide in the absence or in the presence of Lewis acids (including lithium perchlorate) under solvent-free conditions afforded the corresponding α-aminonitriles in good yields and with a diastereoselectivity of 68 to 86%  

    Growth behavior of the electrodeposited Co-Ni alloy nanowires

    , Article International Journal of Modern Physics B ; Volume 22, Issue 18-19 , 2008 , Pages 3013-3022 ; 02179792 (ISSN) Ghahremaninezhad, A ; Dolati, A ; Kazemeini, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2008
    Abstract
    The Co-Ni alloy nanowires were electrodeposited into porous anodic aluminum oxide (AAO) templates. At the first, highly ordered AAO templates were synthesized by two-step anodizing of aluminum to increase pore ordering. Arrays of nanowires with diameter about 30 nm and length about 5000 nm were electrodeposited by alternating current. The composition and structure property of nanowires were investigated by EDX, SEM and TEM techniques. It was found that nanowire composition was related to ions concentration in solution and it was shown that at the optimum potential range of electrodeposition (17-19 V), a change at the potential was shown no strong effect on chemical composition of nanowires.... 

    A GPS-based algorithm for brake and turn detection

    , Article International Journal of Intelligent Transportation Systems Research ; Volume 20, Issue 2 , 2022 , Pages 433-445 ; 13488503 (ISSN) Kazemeini, A ; Taheri, I ; Samimi, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Driving behavior recognition is a notable topic in travel safety, as transportation and insurance companies could adopt effective tools to detect unsafe driving and internalize the associated costs. Different driving events and the related severity must be detected to distinguish abnormal behaviors. The global positioning system (GPS) provides useful information regarding the location of the vehicle at any time and is vastly used in various devices such as smartphones and GPS trackers. Other sensors, on the other hand, provide complementary valuable information but their implementation requires extra costs and more complex and intensive algorithms. We developed a threshold-based algorithm to... 

    Investigation of development features of membrane cell chlor-alkali technology

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Haddadi, A. M ; Babazadeh, F ; Kazemeini, M ; Sharif University of Technology
    2006
    Abstract
    As the membrane technology developed at the last 30 years, the relevant processes have been significantly developed. One of which is the chlor alkali technology. The development of membrane technology and its effect on Chlor-Alkali process is capable of evaluation in to two different fields, environmental and energy consumption. Some of environmental problems of mercury and diaphragm processes because of their technological development have been eliminated the energy consumption of these processes is significantly decreased especially in membrane and diaphragm processes. Recently investigation in the field of membrane cell is more focused on cell construction, depolarized cathodes, and fluid... 

    Removal of fluoride from wastewater by natural and modified nano clinoptilolite zeolite

    , Article Journal of Water and Environmental Nanotechnology ; Volume 5, Issue 3 , 2020 , Pages 270-282 Ghomashi, P ; Charkhi, A ; Kazemeini, M ; Yousefi, T ; Sharif University of Technology
    Iranian Environmental Mutagen Society  2020
    Abstract
    In this study adsorption of fluoride ion from high-fluorine solutions (<2000 ppm) using the natural and modified ground clinoptilolite is investigated. These low-cost adsorbents are carefully characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF), thermos-gravimetry (TGA) and differential scanning calorimeter analysis (DSC). In order to enhance the fluoride removal capacity of natural zeolite, it is milled into nano-powders and modified using hexadecyltriammoniumions (HDTMA+). The kinetic, equilibrium, and thermodynamic of fluoride adsorption are measured and described by the well-known... 

    Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane

    , Article Sensors and Actuators, B: Chemical ; Volume 133, Issue 1 , 26 July , 2008 , Pages 352-356 ; 09254005 (ISSN) Bahrami, B ; Khodadadi, A ; Kazemeini, M ; Mortazavi, Y ; Sharif University of Technology
    2008
    Abstract
    We report the effect of gold nanoparticles on the sensitivity and selectivity of SnO2-based sensors for detection of CO in the presence of methane and C3H8, a model compound representing liquid petroleum gas (LPG). 1.0 wt% Au/SnO2 powder was prepared by a co-precipitation method. The powder formed was washed, dried at 150 °C, and calcined at 300 °C for 3 h. The BET surface area of SnO2 and Au/SnO2 was measured to be 210 and 110 m2/g, corresponding to 4 and 7.5 nm loose spherical particles, respectively. Responses of the Au/SnO2 and SnO2 sensors to 40-1000 ppm CO, 0.2-1.0% C3H8 and 1.0-3.0% CH4 were studied at 170-300 °C in an automated gas sensing system. In this temperature range, the... 

    Development of an empirical model for catalyst lifetime in isobutane/ butene alkylation

    , Article Industrial and Engineering Chemistry Research ; Volume 42, Issue 17 , 2003 , Pages 3886-3892 ; 08885885 (ISSN) Kazemeini, M ; Sahebdelfar, S ; Khorasheh, F ; Badakhshan, A ; Sharif University of Technology
    American Chemical Society  2003
    Abstract
    Dimensional analysis of the governing equations in liquid-phase, solid-acid-catalyzed alkylation was used to develop an empirical model for the catalyst lifetime in terms of important operating variables. It was found that the dimensionless catalyst lifetime in a continuous stirred tank reactor was a function of four dimensionless groups, incorporating all important kinetic and operating variables. A power-law correlation was found to be adequate in representing the available experimental data. Because the alkylation reactions are highly diffusion-limited, it was shown that only three of the four exponents in the power-law correlation were independent. As such, the fourth exponent was... 

    Modelling of fischer-tropsch synthesis in a fluidized bed reactor

    , Article Advanced Materials Research ; Volume 586 , 2012 , Pages 274-281 ; 10226680 (ISSN) ; 9783037855232 (ISBN) Kazemeini, M ; Maleki, R ; Fattahi, M
    2012
    Abstract
    The FT reaction involves the conversion of syngas which is derived from natural gas or coal to different kinds of products according to the operating conditions and the type of the catalyst. In other words, it is a practical way to convert solid fuel (coal) and natural gas to various hydrocarbons (C1-C60) and oxygenates such as alkanes, alkenes etc. The main products of the reaction are naphtha and gasoline. This paper deals with developing a proper product distribution model for FT process using the appropriate kinetic model, optimizing the respective rate constants while applying them in product distribution equations. The results revealed only 8.09% deviations from the olefin experimental... 

    Fabrication of MEA based on sulfonic acid functionalized carbon supported platinum nanoparticles for oxygen reduction reaction in PEMFCs

    , Article RSC Advances ; 2015 , Pages 85775-85784 ; 20462069 (ISSN) Gharibi, H ; Yasi, F ; Kazemeini, M ; Heydari, A ; Golmohammadi, F ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The Nafion ionomer affects the efficiency of the platinum (Pt) catalyst by blocking the active sites thereby restricting the gas permeability of the catalyst layer; but, there is a limitation in the quantity of Nafion ionomer that needs to be added without affecting the cell performance. Sulfonation of carbon-supported catalysts as mixed electronic and protonic conductors has been reported to be an efficient way to increase the triple-phase boundaries. In order to improve the utilization and activity of cathodic catalysts in the oxygen reduction reaction (ORR), Pt nanoparticles were loaded on a mixture of Vulcan XC-72R and MWCNTs, which were functionalized in a mixture of 96% sulfuric acid... 

    The influence of lanthanide on NiO-MgO-SiO2 catalysts for syngas production via propane steam reforming

    , Article Molecular Catalysis ; Volume 499 , 2021 ; 24688231 (ISSN) Barzegari, F ; Rezaei, M ; Kazemeini, M ; Farhadi, F ; Keshavarz, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, 15 wt. % NiO-MgO-SiO2 catalysts modified by La2O3 promoter were prepared through a co-precipitation route and employed for syngas production via propane steam reforming. Various techniques including X-Ray diffraction, BET, TPR, CO2-TPD, CO-chemisorption, TPO, and Scanning electron microscopy were utilized to characterize the final samples. The results indicated that the incorporation of La2O3 enhanced the metal-support interaction providing less reducible Ni species. In comparison with the La-free catalyst, the promoted ones possessed higher metal dispersion and smaller Ni particles. Nonetheless, excessive amounts of La covering the active sites negatively decreased the Ni... 

    Influence of metal loading and reduction temperature on the performance of mesoporous NiO–MgO–SiO2 catalyst in propane steam reforming

    , Article Journal of the Energy Institute ; Volume 96 , 2021 , Pages 38-51 ; 17439671 (ISSN) Barzegari, F ; Farhadi, F ; Rezaei, M ; Kazemeini, M ; Keshavarz, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this research, a series of NiO–MgO–SiO2 catalyst samples with various nickel contents (5, 10, 15 and 20 wt %) were prepared by a co-precipitation method followed by a hydrothermal treatment and employed in propane steam reforming. The analyses revealed that the enhancement of the nickel content up to 15 wt % improved the propane conversion to 98.6% at 550 °C. Nonetheless, further increase in the nickel loading reduced the catalyst activity due to the formation of larger and more poorly dispersed active sites. Besides, 15 wt % nickel loading led to the high resistance against coke deposition with no detectable carbon on the catalyst surface. In addition, it was revealed that, the decrease... 

    Minimizing CO2 formation in Ir-catalyzed methanol carbonylation process

    , Article 20th International Congress of Chemical and Process Engineering, CHISA 2012, Prague, 25 August 2012 through 29 August 2012 ; 2012 , Pages 1179-1188 ; 18777058 (ISSN) Kazemeini, M ; Hosseinpour, V ; Sharif University of Technology
    2012
    Abstract
    Acetic acid is one of the most important petrochemical products. Carbonylation of methanol in homogenous phase is one of the major routes for production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the carbon dioxide formation, experimental design for this system based upon central composite design (CCD) was utilized. Statistical carbon dioxide formation equation developed by this method contained individual, interactions and curvature effects of parameters on the... 

    Minimizing CO2 formation in Ir-catalyzed methanol carbonylation process

    , Article Procedia Engineering ; Volume 42 , 2012 , Pages 1179-1188 Kazemeini, M ; Hosseinpour, V ; Sharif University of Technology
    2012
    Abstract
    The effect of process parameters (temperature, pressure, iridium, ruthenium, methyl iodide, methyl acetate, and water concentrations) on CO2 formation and their interactions on methanol carbonylation were studied. The empirical relations for CO2 were developed. The ranking of the influence of the main effects on the CO2 formation was in the order, i.e., pressure > methyl iodide > iridium > water > temperature > methyl acetate > ruthenium. The results between the actual and predicted values were in good agreement. This is an abstract of a paper presented at the CHISA 2012 - 20th International Congress of Chemical and Process Engineering and PRES 2012 - 15th Conference PRES (Prague, Czech... 

    CFD Modeling of Fixed Bed Reactor for Direct Synthesis of DME from Syngas and Carbon Dioxide

    , M.Sc. Thesis Sharif University of Technology Moradi, Fazel (Author) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    Today, the global environmental restrictions as well as; energy problems have directed researchers toward developing ideas of producing a clean liquid fuel from coal or natural gas as a major research topic. In this regard, a special attention is paid to the dimethyl ether (DME) as a clean material containing 34.8% oxygen possessing enough positive potential to replace the diesel and LPG fuels. One of the most economic routes for producing the DME is known to be the direct conversion of the synthesis gases and carbon dioxide first to the methanol and then its dehydration to the DME. Moreover, the DME is not limited to a particular country or resource area since small reservoirs of natural... 

    Kinetic Modeling of Glycerol Aqueous Phase Reforming Process

    , M.Sc. Thesis Sharif University of Technology Nayernia, Zahra (Author) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    Dwindling fossil fuel reserves with attendant rising crude oil price and the relatively rapid growth in global population have made the search for sustainable energy supply more imperative. Among the various renewable resources, biomass has attract much more attention. Glycerol as the major by-product of the biodiesel production process, can be converted to hydrogen. One of the methods for converting glycerol to hydrogen is aqueous phase reforming (APR). In the current research, glycerol aqueous phase reforming is modeled and then simulated with MATLAB software. The reactor diameter is 5 mm and its length is 20 cm and reactor operated at 250℃ and 50 bar. Glycerol conversion obtained is... 

    Optimization and Continuous Synthesis of Artemisinin Using Core-Shell Nano-Catalysts by Means of Micro-Rector

    , Ph.D. Dissertation Sharif University of Technology Tamtaji, Mohsen (Author) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    Artemisinin as a natural peroxide possess a high anti parasite, and antivirus (Covid-19) properties which could be synthesized through the photooxygenation of dihydroartemisinic acid. This production possesses a lot of difficulties, for example, homogeneous catalyst is used for the photooxygenation reaction which makes photocatalyst and solvent non-reusable. In addition, separation of products from solvent and photocatalysts is difficult. Photooxygenation needs high pressure and low temperature which is very costly. Besides, because of several by-products which are producing during photooxygenation and protonation reactions, Artemisinin yield decreases. The aim of this study is to optimize... 

    Optimization and Continuous Synthesis of Medicines Utilizing Catalysts Through a Micro-Reactor System

    , Ph.D. Dissertation Sharif University of Technology Bastan, Farzad (Author) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    In order to fabricate batch and continuous systems to synthesize Pirfenidone (PFD), Solidwork and COMSOL software were used. Effects of parameters on reaction yield including; microreactors, micromixer, solvents, temperature, reaction time, and catalysts were understudied. Moreover, FTIR, NMR and HPLC analyses used to evaluate the prepared PFD. Its yield in microfluidic (30.5 %) was higher than that of batch (17.1 %) reactor. Besides, reaction yield in the presence of DMSO was higher than DMF in both reactors. It was shown that, adding a micromixer enhanced reaction time. leading to a higher PFD yield. Nonetheless, the yield was reduced by enhancing the temperature when DMF was utilized.... 

    Effect of rare-earth promoters (Ce, La, Y and Zr) on the catalytic performance of NiO-MgO-SiO2 catalyst in propane dry reforming

    , Article Molecular Catalysis ; Volume 522 , 2022 ; 24688231 (ISSN) Barzegari, F ; Rezaei, M ; Kazemeini, M ; Farhadi, F ; Keshavarz, A. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this contribution, NiO-MgO-SiO2 catalysts containing 3 wt. % of CeO2, La2O3, Y2O3, and Zr2O3 were examined for propane dry reforming at 550-750 °C. The samples were synthesized by a co-precipitation route, followed by a hydrothermal treatment, and characterized by BET, XRD and TPX analyses. The results indicated that the addition of promoters enhanced the metal-support interaction and basic characteristics, while the acidic nature of the promoted catalyst was changed in a different way. The highest propane conversion of 39.6% was observed over Ce-promoter sample, while the un-promoted catalyst possessed a value of 36.8% at 700 °C. Nevertheless, La and Y-promoted catalysts possessed a... 

    Preparation and Physico-chemical Characterization of Titanium Dioxide Nanotubes with Electrochemical Method for Oxidative Dehydrogenation of Propane (ODHP)

    , M.Sc. Thesis Sharif University of Technology Nik-khah, Maryam (Author) ; Kazemeini, mohammad (Supervisor)
    Abstract
    Samples of the V2O5 catalysts supported on nanostructures of TiO2 and γ-Al2O3 were synthesized via hydrothermal method for the oxidative dehydrogenation of propane (ODHP) to propylene. The TiO2 support was utilized in both commercial microstructures and prepared nanostructures from their corresponding salts. Furthermore,the γ-Al2O3 was also prepared from two novel methods. Moreover, the vanadium catalysts supported on hybrid TiO2 and γ-Al2O3 were prepared. The performances of the prepared catalysts were subsequently examined in a fixed-bed reactor. The main products were propylene, ethylene and COx.The vanadium catalyst over TiO2 and γ-Al2O3 had the best performance under the reactor test...